
Eric Johnson edj36 ECE 4950 Final Review

1 Decision Trees

Def: Decision tree is method for approximating discrete-valued target functions, the learned function is a
decision tree (can be represented as a series of if then rules)

Goal is to figure out what questions to ask, in what order, and what to do with the answers

Appropriate problems for decision tree learning

• instances represented with attribute-value pairs

• target function has discrete output values

• disjunctive descriptions may be required

• training data may contain errors

• training data may contain missing attribute values

Def: task in which you have to classify example into discrete set of possible categories is a classification
problem

Basic d-tree learning algorithm: ID3 The ID3 algorithm infers decision trees by growing from the root
down down, greedily selecting the next best attribute for new decision branch added to the tree.

1. each instance attribute is evaluated using a statistical test to determine how well it alone classifies the
training examples

2. best attribute is selected and used as the test at the root node of the tree

3. descendant of the root node is then created for each possible value of this attribute, and the training
examples are sorted to the appropriate descendant node

4. repeat using the training examples associated with each descendant node to select the best attribute
to test at that point in the tree

5. forms a greedy search for an acceptable decision tree in which the algorithm never backtracks to
reconsider earlier choices

But how to choose between attributes?

Def: Information gain is a statistical property that measures how well a given attribute seperates training
examples according to target classification, ID3 uses information gain measure to select among the candidate
attributes at each step while growing the tree

Def: Entropy characterizes impurity of a collection of examples. Given collection S where each s ∈ S can
take on c possible values, entropy is

Entropy(S) =

c∑
i=1

−pi log2 pi

where pi is the proportion of S belonging to class i. For c different classes, max entropy is log2 c.

Information gain measures expected reduction in entropy, as follows, given set of examples S, and attribute
A, the information gain of attribute A is

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

where V alues(A) is the set of all possible values of attribute A, Sv is the subset of S for which attribute A
has value v

ID3 algorithm terminates when either (1) every attribute has been included in current path on tree or (2)
the training examples associated with the leaf node all have the same target value.

1

Eric Johnson edj36 ECE 4950 Final Review

ID3 searches a space of hypotheses for one that fits the training examples. The hypotheses space is the
space of all decision trees, because every finite discrete-valued function can be classified with decision tree,
hypotheses space will always contain the target function. ID3 doesn’t backtrack, so might converge to
a locally optimal solution that is not globally optimal (extension: post-pruning). ID3 uses all training
examples at each step to make decision, so its less sensitive to errors in training data.

Approximate inductive bias for ID3: shorter trees preferred over larger trees, higher information gain closer
to the root - a tree is only grown to be just as large as is needed to classify

Issues with decision trees

• avoid overfitting data

Def: given a hypothesis space H, hypothesis h ∈ H overfits the data if ∃ hypothesis h′ ∈ H st
h has smaller error than h′ on training examples, but h′ has smaller error on entire distribution of
instances.

to prevent: can stop growing tree earlier, overfit then post prune your tree, use training set and vali-
dation set, reduced error pruning (only prune if helps reduce error), rule post pruning, use attribute
selection other than information gain

• continuous valued attributes - pick a threshold that gives best information gain

2 Naive Bayes

Naive bayes applies to learning tasks where each instance x is described by tuple of attribute values, and
the target function f(x) takes on values from a finite set V . Set of training examples is given as tuples of
attributes (a1, . . . , an), and classifier predicts a value vNB . This is a generative model.

The naive Bayes classifier is based on the simplifying assumption that the attribute values are conditionally
independent given the target value - this is what makes it ”naive”.

Model takes O(CD) parameters, where C is number of classes (e.g. type of document) and D is the number
of features (e.g. total number of words in a document)

Classifier is
vNB = argmaxvj∈V P (vj)

∏
i

P (ai|vj)

Naive bayes involves learning step where you estimate P (vj) and P (ai|vj), based on frequency in training
data, this makes the learned hypothesis, and then you use this to classify incoming examples. There is no
explicity search through the hypothesis space.

Calculate probability P (c|vj = 0) by taking
nc
n

Where n is the number of examples where vj = 0 holds, and nc is number of those n examples where c holds.
You run into a problem if there is a zero probability attribute or value - it zero’s out your classification. Fix
this by instead calculating probabilities as an m-estimate of probability:

nc +mp

n+m

nc and n are defined the same as above, and p is the prior estimate of the probability being determined, and
m is a constant known as equivalent sample size. Typically, if attribute has k possible values, set p to be 1

k
(e.g. if attribute is binary, p = 1

2).

2

Eric Johnson edj36 ECE 4950 Final Review

If we are classifying text documents (bag-of-words model), the m-estimate of P (wk|vj) is

nk +mp

n+m
=

nk + 1

n+ |Vocabulary|

m = |Vocabulary| is the number of distinct words in the document, n is the total number of word positions
in training examples who’s value is vj , nk is the number of times word wk is found in the n word positions
(p = 1/|Vocabulary|)

Psuedo-code for text classification is on page 183 of Mitchell.

3 Perceptron

Perceptron is process of finding a good linear decision boundary for given data. Follows the neural model of
learning.

Perceptron is online (only looks at one example at once) and error driven (only updates parameters if it
mis-classifies something).

Perceptron Algorithm

Start Initialize w̄∗

• For iter = i, . . . , ITER

– For i = 1, . . . , n
if sign(X̄∗(i) · w̄∗) 6= f(X̄(i))

∗ w̄∗new = w̄∗old + f(X̄(i)) · X̄∗(i)

Output w̄∗

Can add a bias term to shift classification to be more positive or more negative.

The decision boundary for a perceptron in a D-dimensional space is always a (D-1)-dimensional hyper-
plane.

Heuristic for interpreting perceptron weights: sort all weights from largest (positive) to largest (negative)
and take the top ten and bottom ten. Top ten are most sensitive for positive classification, bottom ten are
most sensitive for negative classification. Works best with binary values, scale features ahead of time.

Perceptron has converged when it can make a pass through all the data without making any updates (every
example classified correctly). Perceptron will converge when data is linearly seperable, will not other-
wise.

Def: If you are given a data set and hyperplane that classifies it, the margin is the distance between the
hyperplane and the nearest point. Larger margin → easier to classify. Given a data set D, weight vector w,
bias b margin is

margin(D,w, b) =

{
min(x,y)∈D{y(w · x+ b)} if w seperates D

−∞ else

Def: Margin of a data set is the largest attainable margin on dataset D

margin(D) = γ = supw,b{margin(D,w, b)}

Perceptron convergence Theorem: Suppose the perceptron algorithm is run on a linearly seperable data
set D with margin γ > 0. Assume that ||x|| ≤ 1 ∀ x ∈ D. Then the algorithm will converge after at most
1
γ2 updates.

3

Eric Johnson edj36 ECE 4950 Final Review

Problem with perceptron is that it counts later points more than initial ones, a wrong classification on
the 10,000th step will mess up the weight vector for the first 9,999 steps. Fix this with voting: weights
that survive in the vector a long time get more say than a newer weight. This is known as the voted
perceptron

ŷ = sign
(K∑
k=1

cksign(wk · x̂+ bk)
)

it is theoretically very accurate, but completely impractical to store all of the voting powers for all of the
weights. More practical is averaged perceptron

ŷ = sign
((K∑

k=1

ckwk
)
· x̂+

K∑
k=1

ckbk
)

Averaged perceptron is generally better than perceptron, but does not have early stopping and will lead to
overfitting.

Perceptron Limitations

• decision boundaries can only be linear, XOR problem
Fix this with feature combinations, feature mappings, combine multiple perceptrons in a neural net-
work, use kernels

4 Regression

4.1 Linear Regression Models and Least Squares

We have input vector XT = (X1, X2, . . . , Xp) and want to predict real valued output Y . Linear regression
model has the form

f(X) = β0 +

p∑
j=1

Xjβj

Typically we have a set of training data {(x1, y1), . . . , (xN , yn)} from which we estimate parameters β. Each
xi is vector (xi1, xi2, . . . , xip)

T of feature measurements for the ith case. Most popular estimation method is
least squares, where you pick β = (β0, β1, . . . , βp)

T to minimize the residual sum of squares RSS

RSS(β) =

N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(yi − β0 −
p∑
j=1

xijβi)
2

We minimize the RSS(β) with the following value

β̂ = (XTX)−1XT y

Predicted values for input vector x0 are are given by f̂(xo) = (1 : x0)T β̂, ŷi = f̂(xi).

Gauss-Markov Theorem: the least squares estimates of the parameters β have the smallest variance
among all linear unbiased estimates. Note restricting to unbiased estimators is not a good idea.

Logistic regression classifier is a linear model.

4.2 Shrinkage Methods

By retaining a subset of the predictors and discarding the rest, subset selection produces a model that is
interpretable and has possibly lower prediction error than the full model. However, because that is a discrete

4

Eric Johnson edj36 ECE 4950 Final Review

process, produces high variance and doesn’t generalize well. Shrinkage methods are more continuous, thus
don’t suffer as much from the high variance.

Ridge Regression shrinks regression coefficients by imposing a penalty on their size.

β̂ridge = argminβ

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

subject to

p∑
j=1

β2
j ≤ t

Lasso is a shrinkage method like the ridge, but with subtle differences

β̂lasso = argminβ

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

subject to

p∑
j=1

|βj | ≤ t

4.3 General regression

Overfitting occurs when a model captures idiosyncracies of the data rather than generalizing. Too many
parameters relative to the amount of training data.

How to detect/prevent overfitting:

• use more data

• evaluate on parameter tuning set

• regularization

• take a bayesian approach

Regularization introduce a penalty term for the size of the weights

Regularization approaches

• L-2 (closed form in polynomial time)

E(w) =
1

2

N−1∑
n=0

(tn − y(xn, w))2 +
λ

2
||w||2

• L-1 (can be approximated in polynomial time)

E(w) =
1

2

N−1∑
n=0

(tn − y(xn, w))2 + λ|w|1

• L-0 (NP complete optimization)

E(w) =
1

2

N−1∑
n=0

(tn − y(xn, w))2 + λ

N−1∑
n=0

δ(wn 6= 0)

L-0 norm represents the optimal subset of features needed by a regression model.

Curse of dimensionality: Increasing dimensionality of the feature space exponentially increases the data
needs. (dim(Feature space) = number of features)

5

Eric Johnson edj36 ECE 4950 Final Review

5 SVM

5.1 Maximum Margin Classifiers

y(x) = wTφ(X) + b

Training data set comprises N input vectors x1, . . . , xN , with target values t1, . . . , tN where ti ∈ {−1, 1} and
new data points x are classified according to the sign of y(x)

Kernel function takes two vectors and computes their dot product in a higher dimension, say φ is mapping
to higher dimension, kernel then is

k(x, x′) = φ(x)Tφ(x′)

Kernel must always be positive definite (or semi-definite) to ensure corresponding optimization problem is
well defined. New classification with kernel

y(x) =

N∑
i=1

antnk(x, xn) + b

A constrained optimization of this form will satisfy the KKT conditions

an ≥ 0

tny(xn)− 1 ≥ 0

an{tny(xn)− 1} = 0

Which means that for every data point, either an = 0 or tny(xn) = 1. The data points for which an 6= 0
are called support vectors, and correspond to points that lie on the maximum margin hyperplanes in the
feature space. Once model is trained, most of the data points can be discarded, only need to support vectors
to classify.

Data set may not be linearly separable in the two-dimensional data space, it will be linearly separable in the
nonlinear feature space defined implicitly by the nonlinear kernel function. Thus the training data points
can be perfectly separated in the original data space.

Slack variables (ξn ≥ 0) introduced to allow data to be on ”wrong side” of classifier, but give (non-infinite)
penalty to these incorrect classifications, penalty increases with distance from boundary. Classification
constraints replaced with

tny(xn) ≥ 1− ξn n = 1, . . . , N

This helps with overlapping class distributions, but still is sensitive to outliers.

Andrew Ng Notation: features are x, labels are y ∈ {−1, 1}, classifier is

hw,b(x) = g(wTx+ b)

g(z) = 1ifz ≥ 0, and g(z) = −1 otherwise.

Def: Given a training example (x(i), y(i)), the functional margin of (w, b) wrt the training example is

γ̂(i) = y(i)(wTx+ b)

A large functional margin represents a confident and correct prediction. Prediction only ever depends on
the sign of the vector wTx+ b.

Given a training set S = {(x(i), y(i)|i = 1 . . . ,m} define the functional margin of (w, b) wrt S to be the
smallest of the functional margins of the individual training examples

γ̂ = min
i=1,...,m

γ̂(i)

6

Eric Johnson edj36 ECE 4950 Final Review

Note w is orthogonal (at 90o) to the seperating hyperplane (so the dot product will be zero).

Def: Geometric margin of (w, b) wrt training example (x(i), y(i)) is

γ(i) = y(i)
((w

||w||
)T
x(i) +

b

||w||

)
The geometric margin is invariant to the scaling of parameters.

Given a training set S = {(x(i), y(i)|i = 1 . . . ,m} define the geometric margin of (w, b) wrt S to be the
smallest of the geometric margins of the individual training examples

γ = min
i=1,...,m

γ(i)

Finding an optimal margin classifier is an optimization that can be solved with quadratic program-
ming.

5.2 Langrange Duality

Consider problem of the following form:

min
w

f(w)

st hi(w) = 0, i = 1, . . . , l

Def: Lagrangian

L(w, β) = f(w) +

l∑
i=1

βihi(w)

The βis are lagrange multipliers, find and set L’s derivatives to zero

dL
dwi

= 0;
dL
dβi

= 0

and solve for w and β.

Consider the following, a primal optimization problem:

min
w

f(w)

st gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l

To solve, begin by defining generalized Lagrangian

Def: generalized Lagrangian

L(w,α, β) = f(w) +

k∑
i=1

αigi(w) +

l∑
i=1

βihi(w)

The lagrange multipliers here are the αi and βi. Consider the quantity (the primal)

θP(w) = max
α,β:αi≥0

L(w,α, β)

The optimal value of this (primal) objective is

p∗ = min
w
θP(w)

7

Eric Johnson edj36 ECE 4950 Final Review

Now if we look at a different problem (the dual)

θD(α, β) = min
w
L(w,α, β)

The optimal value of this (dual) objective is

d∗ = max
α,β:αi≥0

θD(w)

It can be shown that

d∗ = max
α,β:αi≥0

min
w
L(w,α, β) ≤ min

w
max

α,β:αi≥0
L(w,α, β) = p∗

(this follows from the ”max min” of a function always being less than or equal to the ”min max”), and under
certain conditions

d∗ = p∗ = L(w∗, α∗, β∗)

The w∗, α∗, β∗ must satisfy the KKT conditions

d

dwi
L(w∗, α∗, β∗) = 0, i = 1, . . . , n

d

dβi
L(w∗, α∗, β∗) = 0, i = 1, . . . , l

α∗i gi(w
∗) = 0, i = 1, . . . , k

gi(w
∗) ≤ 0, i = 1, . . . , k

α∗ ≥ 0, i = 1, . . . , k

and if they do, they are the solution to the primal and dual problems.

5.3 Optimal margin classifier

Use Lagrange and solve the dual to get

b∗ = −
maxi:y(i)=−1(w∗)Tx(i) + mini:y(i)=1(w∗)Tx(i)

2

And know αis will be support vectors and see the following holds

wTx+ b =

m∑
i=1

αiy
(i)〈x(i), x〉+ b

Resulting support vector machines will be able to classify well in high dimensional spaces.

6 Kernel trick

Def: Feature mapping φ maps from attributes to features

φ(x) =

 xx2

x3

(can be to any ”features”, these are an example)

8

Eric Johnson edj36 ECE 4950 Final Review

Def: Given a feature mapping φ, the corresponding Kernel is

K(x, y) = φ(x)Tφ(y)

i.e. dot product in higher dimension.

Generally, the kernel K(x, z) = (xT z + c)d corresponds to a feature mapping to an
(
n+d
d

)
feature space. No

matter the feature space that is mapped to (O(nd)-dimensions), computing the kernel will only take O(n)
time, because we never have to store the new higher dimensional vector.

Def: Gaussian kernel

K(x, z) = exp
(
− ||x− z||

2

2σ2

)
Def: Given some finite set of m points {x(1), . . . , x(m)}, let a square m×m matrix, K, the Kernel Matrix,
be defined so that its (i, j) entry is given by Kij = K(x(i), x(j)).

Mercer’s Theorem Let K : Rn×Rn → R be given. Then for K to be a valid (Mercer) kernel, it is necessary
and sufficient that for any {x(1), . . . , x(m)}, (m ≤ ∞), the corresponding kernel matrix is symmetric positive
semi-definite.

Specifically, if you have any learning algorithm that you can write in terms of only inner products 〈x, z〉
between input attribute vectors, then by replacing this with K(x, z) where K is a kernel, you can ”magically”
allow your algorithm to work efficiently in the high dimensional feature space corresponding to K.

7 Nearest neighbor methods

These are instance-based approaches. One disadvantage of instance-based approaches is that the cost of
classifying new instances can be high (all computational complexity is at the classification step, training step
just consists of saving the data in some form or another).

k-Nearest neighbor learning

Assume all instances correspond to points in an n-dimensional feature space Rn. Let an arbitrary instance
x be described via the feature vector

x = 〈a1(x), . . . , an(x)〉

where ar indicates the rth attribute of instance x. Distance between two instances xi and xj is defined to
be d(xi, xj) as follows

d(xi, xj) =

√√√√ n∑
r=1

(ar(xi)− ar(xj))2

Define the nearest neighbor target function f : Rn → V , where V is finite set {v1, . . . , vs}. The value of

f̂(xq) (estimate of f(xq)) returned is the most common value of f among the k training examples nearest
to xq.

Algorithm is as follows (discrete case)

Training algorithm:

• For each training example 〈x, f(x)〉, add the example to the list training examples

Classification algorithm:

• Given a query instance xq to be classified:

– Let x1, . . . , xk be the k instances from training examples that are nearest to xq

9

Eric Johnson edj36 ECE 4950 Final Review

– Return

f̂(xq)← argmaxv∈V

k∑
i=1

δ(v, f(xi))

Where δ(a, b) = 1 if a = b, 0 else.

For the continuous case, replace

f̂(xq)← argmaxv∈V

k∑
i=1

δ(v, f(xi)) with f̂(xq)←
∑k
i=1 f(xi)

k

Distance weighting: weight the vote of each neighbor according to the inverse square of its distance from
xq. This can be accomplished by replacing the final line of the algorithm with

f̂(xq)← argmaxv∈V

k∑
i=1

wiδ(v, f(xi)) where wi =
1

d(xq, xi)2

Similarly for continous

f̂(xq)←
∑k
i=1 wif(xi)∑k

i=1 wi

If all training examples considered for classification, its a global method, if only nearest training examples
are considered, its a local method.

k-nearest neighbors is effective given a large training set and is robust to noisy training data.

Nearest neighbor methods are especially subject to the curse of dimensionality : in this case, when the
distance between instances (that should be classified the same) is dominated by a large number of irrelevant
attributes. Can overcome by weighting attributes differently and using cross-validation.

One additional practical issue in applying k-NEAREST NEIGHBOR is efficient memory indexing.

Terminology

• regression means approximating a real-valued function

• residual is the error f̂(x)− f(x) in approximating a target function

Lazy vs. Eager learning

A lazy learner has the option of (implicitly) representing the target function by a combination of many local
approximations, whereas an eager learner must commit at training time to a single global approximation.
The distinction between eager and lazy learning is thus related to the distinction between global and local
approximations to the target function.

Instance-based learning methods delay processing of training examples until they must label a new query
instance. They need not form an explicit hypothesis of the entire target function over the entire instance
space, independent of the query instance. Instead, they may form a different local approximation to the
target function for each query instance.

Advantages include the ability to model complex target functions by a collection of less complex local
approximations and the fact that information present in the training examples is never lost.

Main practical difficulty is complexity/efficiency of classifying new instances.

10

Eric Johnson edj36 ECE 4950 Final Review

8 Bagging, boosting

8.1 Bagging

Bagging (”bootstrap aggregating”) predictors is a method for generating multiple versions of a predictor and
using these to get an aggregated predictor. If perturbing the learning set can cause significant changes in
the predictor constructed, then bagging can improve accuracy.

Bagging unstable (high variance) classifiers usually improves them. Bagging stable classifiers is not a good
idea.

Say you have training set T with n examples.

Def: Bootstrap sampling is when you create a T ′ by sampling the n examples from T with replace-
ment

Bagging procedure:

• create T1, . . . , Tr (r bootstrap samples)

• train a classifier (or regressor) on each Ti seperately

• output majority vote (classification) or average (regression) of the outputs

Averaging reduces variance, but depends on the model (not all are independent). Bagging does not change
bias of underlying model.

8.2 Boosting

Boosting approach

• select small subset of examples

• derive rule of thumb

• examine 2nd small subset of examples

• derive 2nd rule of thumb

• repeat T times

More formally

• given training set (x1, y1), . . . , (xm, ym)

• yi ∈ {−1,+1} correct label of instance xi ∈ X

• for t = 1, . . . , T :

– construct distribution Dt on {1, . . . ,m}

– find weak hypothesis (”rule of thumb”) ht : X → {−1,+1} with small error εt on Dt: εt =
PrDt

(ht(xi) 6= yi)

• output final hypothesis Hfinal

Boosting = general method of converting rough ”rules of thumb” into highly accurate prediction rule.

Adaboost

• construct Dt as follows:

– D1(i) = 1/m

11

Eric Johnson edj36 ECE 4950 Final Review

– given Dt and ht:

Dt+1(i) =
Dt(i)

Zt
·

{
e−αt if yi = ht(xi)

eαt if yi 6= ht(xi)

=
Dt(i)

Zt
· exp(−αtyiht(xi))

where Zt is normalization constant and αt = 1
2 ln

(
1−εt
εt

)
> 0

• final hypothesis:

Hfinal(x) = sign
(∑

t

αtht(x)
)

Adaboost exhibits strong practical advantages over other boosting schemes.

Theorem

• run adaboost

• let εt = 1/2− γt
• then

training error(Hfinal) ≤ exp
(
− 2

∑
t

γ2
t

)
• so if ∀ t: γt ≥ γ > 0, then

training error(Hfinal) ≤ exp
(
− 2γ2

t T
)

• this is adaptive: don’t need to know γ or T apriori, and exploit γt >> γ

Another way to give theorem: training error(Hfinal) ≤
∏
t Zt

NEED TO GO OVER NOTES FROM CLASS TO FINISH THIS SECTION

9 Neural Networks

Biological motivation: complex webs of neurons, similar to how the brain works

Nueron takes a bunch of inputs and outputs a real number.

The entire field of neural computation is, in a way, attempting to understand how the brain works.

The Artificial Neural Network (ANN) is a closely connected set of simple units. It is a ”general purpose”
neural network, and is robust. Limitations include that it is slow learning, and requires a huge amount of
data to learn.

Neural Network:

φ is decision boundary for a node: φ(w̄∗ · x̄∗)

You can have perceptrons splitting data at each node, or sigmoid function:

σ(x) =
1

1 + ex

dσ(x)

dx
= σ(x)(1− σ(x))→ σ′ = σ(1− σ)

• I - set of input nodes

• H - set of hidden nodes

12

Eric Johnson edj36 ECE 4950 Final Review

• K - set of output nodes

• wij - weight of edge connecting node i to j

• Def: neti to be total input to a node
outi = φ(neti)

Consider one output (O), look at what weight should be

(x̄, f(x̄))→ (x̄, f1, f2, . . . , fk)

Error =
1

2

∑
k∈K

(Ok − fk)2

Minimize error by taking partial derivatives to get

dE

dwhk
= δkOh

Thus weight should be
wl+1 = wl − ηδkOh

δ defined as
δh = Outh(1−Outh) ·

∑
k∈K

δkwhk

Limitations:

• need substantial training examples

• slow learning convergence rates

• poor minima, no convergence guarantees, local minima at best

Tips for running: use multiple networks with different weights, have a momentum term, defined as fol-
lows

∆wt+1 = −η dE
dw

+ α ·∆wt

Momentum term tries to get network to converge faster.

Expressivness of nueral networks:

• underlying partition of feature space is a function, we are trying to learn this

• every bounded continuous function can be approximated to arbitrarily small error with with 1 hidden
layer

• can learn very complicated functions

Regularization

How do we determine the number of hidden layers? More can lead to overfitting and less can lead to
underfitting. Via weight regularization

Ẽ = E(w) + λ||w||22
Convolutional NN

Invariance property : Ofter we desire the output not to change under certain changes to the input. We want
to be able to use ”very raw data” but still get the same output

Solution: Use a convolutional layer in the neural network. Convolution of f and g is

f ∗ g =

∫
g(t− τ)f(τ)dτ

13

Eric Johnson edj36 ECE 4950 Final Review

10 Hidden Markov Models, Viterbi algorithm

Probabilistic models for sequences of observations, X1, . . . , XT , of arbitrary length T .

Markov Chain/Model

p(X1:T) = p(X1)

T∏
t=2

p(Xt|Xt−1)

Def: when Xt ∈ {1, . . . ,K} the conditional distribution p(Xt|Xt−1) can be written as a K × K matrix,
known as transistion matrix A, where Aij = p(Xt = j|Xt−1 = i) is the probability of going from state i
to state j. Each row of the matrix sums to one,

∑
j Aij = 1, so this is called a stochastic matrix.

We can simulate multiple steps of a markov chain by taking the transistion matrix to some power equal to
the number of steps you want to simulate.

Def: long term distribution over states is known as the stationary distribution of the markov chain

Theorem Every irreducible (singly connected), aperiodic finite state Markov chain has a limiting distribu-
tion, which is equal to π, its unique stationary distribution.

Theorem Every irreducible (singly connected), ergodic Markov chain has a limiting distribution, which is
equal to π, its unique stationary distribution.

Hidden Markov Models

A hidden markov model consists of a discrete-time discrete-state markov chain with hidden states zt ∈
{1, . . . ,K}, plus an observation model p(xt|zt). Corresponding joint distribution has the form

p(z1:T , x1:T) =

[
p(z1)

T∏
t=2

p(zt|zt−1)

][
T∏
t=1

p(xt|zt)

]

If observations are discrete, its common for them to be represented as a observation matrix:

p(xt = l|zt = k, θ) = B(k, l)

If observations are continuous, its common for them to be represented as a conditional gaussian:

p(xt|zt = k, θ) = N (xt|µk,Σk)

Viterbi Algorithm

Given observations and a HMM, wish to find the maximum probability state path. We find this with the
Viterbi algorithm. Not sure if we need to know actual algorithm - page 8 in Rabiner tutorial.

11 Dimensionality reduction: PCA

Principle components analysis: idea is given data in a d-dimensional space, project it into a lower dimensional
space, while perserving as much information as possible. Choose projection that minimizes squared error in
reconstructing original data.

Assume data is a set of d N -dimensional vectors x = ((x1)T , . . . , (xd)
T). We can always express the kth

vector as xk =
∑rank(xn)
i=1 zki ui.

PCA problem: given M < d, find (u1, . . . , uM) that minimize

EM =

d∑
k=1

||xk − x̂k||22

14

Eric Johnson edj36 ECE 4950 Final Review

where x̂ = x̄+
∑M
i=1 z

k
i ui and x̄ is the mean: x̄ = 1

d

∑d
i=1 xi

Eigenvectors

Matrix A has eigenvector u with eigenvalue λ if

Au = λu

For symmetric A (normalized) eigenvectors:

• are orthogonal

• have real eigenvalues

• form an orthonormal basis for A

Projection

Projecting an orthonormal basis is trivial.

Suppose U is our basis (formed by first k eigenvectors), and suppose we want to project a new x

w = (UTU)−1UTx = UTx

Back to PCA...

Note we get zero error is M = d in PCA.

We want to minimize EM =
∑d
i=M+1 u

T
i Σui

Σui = λiui

Where λi is eigenvalue and ui is eigenvector, doing math gives

EM =

d∑
i=M+1

λi

PCA Algorithm:

1. X ← create N × d data matrix

2. A ← subtract mean x̄ from each column in X

3. Σ ← covariance matrix of A

4. Find eigenvalues and eigenvectors of Σ

5. Principle components ← M eigenvectors with the largest eigenvalues

PCA Limitations:

• requires carefully controlled data, no missing entries

• completely knowledge free method

PCA Conclusions:

• PCA finds orthonormal basis for data

• sorts dimensions in order of importance

• discards low significance dimensions to get compact description, ignore noise, and hopefully classify
better

• not magic: doesn’t know class labels, only works with linear variations

Principle component directions for different eigenvalues are orthogonal to each other.

For data to be centered: if you add up each vector in the data it should equal the zero vector.

15

Eric Johnson edj36 ECE 4950 Final Review

12 K-means, EM algorithm

12.1 K-means clustering

Suppose we have a dataset {x1, . . . , xn} consisting of n observations of a random D dimensional variable x.
Goal is to partition the data into K clusters. We want to find a set of D dimensional vectors µk, k = 1, . . . ,K,
where each µk is the center of the kth cluster.

For each data point xn, introduce a corresponding set of binary indicator variables rnk ∈ {0, 1}, where
k = 1, . . . ,K describing which of the K clusters the data point xn is assigned to, so that if data point xn
is assigned to cluster k then rnk = 1, and rnj = 0 for j 6= k. This is known as the 1 − of − K coding
scheme.

rnk =

{
1 if k = arg minj ||xn − µj ||2

0 else

Def: Distortion measure

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2

Goal is to find vectors {rnk} and {µk} to minimize J . Solving gives

µk =

∑
n rnkxn∑
n rnk

Sequential updating (online algorithm): for each data point xn, update nearest prototype µk via

µnewk = µoldk + ηn(xn − µoldk)

Where ηn is the learning rate parameter.

12.2 Mixtures

Def: Gaussian Mixture Distribution

p(x) =

K∑
k=1

πkN (x|µk,Σk)

Introduce a K-dimensional binary random variable z having a 1−of−K representation in which a particular
element zk = 1 and all other elements are equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and∑
k zk = 1. The marginal distribution over z is specified in terms of mixing coefficients πk st

p(zk = 1) = πk

Expectation maximization for Gaussian mixtures Given a Gaussian mixture model, goal is to maxi-
mize likelihood function wrt the parameters

1. Initialize the means µk, covariances Σk, and mixing coefficients πk, and evaluate the initial value of
the log-likelihood

2. E step Evaluate the responsibilities using the current parameters

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

16

Eric Johnson edj36 ECE 4950 Final Review

3. M step Re-estimate parameters using the current responsibilities

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnewk =
1

Nk

N∑
n=1

γ(znk)(xn − µnewk)(xn − µnewk)T

πnewk =
Nk
N

where

Nk =

N∑
n=1

γ(znk)

4. Evaluate the log-likelihood

ln p(X|µ,Σ, π) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}

and check for convergence of either the parameters or the log-likelihood. If the convergence criterion
is not satisfied, return to step 2.

General EM Algorithm

Given a joint distribution p(X,Z|Θ) over observed variables X and latent variables Z, governed by param-
eters Θ, the goal is to maximize the likelihood function p(X|Θ) wrt Θ.

1. Choose an initial setting for the parameters Θold.

2. E step Evaluate p(Z|X,Θold)

3. M step Evaluate Θnew given by

Θnew = arg minΘQ(Θ,Θold)

where
Q(Θ,Θold) =

∑
Z

p(Z|X,Θold) ln p(X,Z|Θold)

4. check for convergence of either log likelihood or parameters, if convergence criterion not satisfied, let
Θold ← Θnew and repeat from step 2.

13 Learning Theory

Def: Sample complexity How many training examples are needed for a learner to converge (with high
probability) to a successful hypothesis?

Def: Computational complexity How much computational effort is needed for a learner to converge (with
high probability) to a successful hypothesis?

Def: Mistake bound How many training examples will the learner misclassify before converging to a
successful hypothesis?

17

Eric Johnson edj36 ECE 4950 Final Review

13.1 True error rate, training error rate

Def: true error (errorD(h)) of hypothesis h wrt target concept c and distribution D is the probability that
h will missclassify an instance drawn at random according to D.

errorD(h) = Px∈D(c(x) 6= h(x))

Def: training error is fraction of training examples misclassified by h.

Def: Consider a concept class C defined over a set of instances X of length n and a learner L using hypothesis
space H. C is PAC Learnable by L using H if ∀ c ∈ C, distributions D over X, ε st 0 < ε < 1/2, and δ st
0 < δ < 1/2, learner L will with probability at least (1− δ) output a hypothesis h ∈ H st errorD(h) ≤ ε, in
time that is polynomial in 1

ε ,
1
δ , n and size(c).

13.2 VC dimension, Shattering

Def: A set of instances S is shattered by hypothesis space H iff for every dichotomy of S ∃ some hypothesis
H consistent with this dichotomy.

Def: Vapnik-Chervonenkis Dimension V C(H), of hypothesis space H defined over instance space X is
the size of the largest finite subset of X shattered by H. If arbitrarily finite sets of X can be shattered by
H, then V C(H) =∞.

Note for any finite H, V C(H) ≤ log2 |H|. To see this, suppose V C(H) = d, then H will require 2d distinct
hypothesis to shatter d instances. Hence, 2d ≤ |H| → V C(H) ≤ log2 |H|.

To show that V C(H) < d, we must show that no set of size d can be shattered.

Generally, it can be shown that the V C dimension of linear decision surfaces in an r dimensional space (i.e.,
the VC dimension of a perceptron with r inputs) is r + 1.

18

