
ECE 4271: Evolutionary Processes, Evolutionary Algorithms,

Evolutionary Games

Eric Johnson edj36

May 16, 2018

Abstract

ECE 4271: Evolutionary Processes, Evolutionary Algorithms, Evolutionary Games was taught in
Spring 2018 at Cornell University by Professor Delchamps. What follows are my notes that I used to
summarize his lectures, handouts, and other assigned readings throughout the semester.

Contents

1 Genetic Algorithms: An Overview 2
1.1 Search Spaces and Fitness Landscapes . 2
1.2 Elements of Genetic Algorithms . 2
1.3 Simple Genetic Algorithm . 2
1.4 Genetic Algorithms and Traditional Search Methods . 3
1.5 Some Applications of Genetic Algorithms . 3
1.6 How Do Genetic Algorithms Work? . 4

2 Markov Chains 5
2.1 What is a Markov Chain? . 5
2.2 Random and non-random quantities; transient and recurrent states 6
2.3 Recurrence classes and limits of expected time averages . 7
2.4 Stationary distributions . 9
2.5 Convergence of time averages with probability 1 . 10
2.6 Convergence of distributions . 11

3 Metropolis 13
3.1 Metropolis-Hastings Algorithm . 13

4 Schema Theorem 14
4.1 New lower bound . 15

5 Game Theory 15
5.1 Example Games . 16
5.2 Actions, Strategies, Replies . 16
5.3 Nash equilibria . 18
5.4 Iterated Prisoners’ Dilemma . 20

6 Evolutionarily Stable Strategy Concepts 20

7 Replicator Dynamics 23

1

ECE 4271

1 Genetic Algorithms: An Overview

This section draws on material from Chapter 1 of An Introduction to Genetic Algorithms by Melanie
Mitchell.

Computer scientists have studied evolutionary systems with the idea that evolution could be used as an
optimization tool for engineering problems. Genetic algorithms were invented by John Holland in the 1960s
to formally study the phenomenon of adaptation as it occurs in nature and to develop ways in which the
mechanisms of natural adaption might be imported into computer systems.

Why is evolution appealing? Many computational problems require a search through a huge number of
possibilities for a solution and require a computer program to be adaptive. Evolution is effectively searching
among an enormous number of possibilities for solutions and is an adaptive method for designing innovative
solutions to complex problems. In this light we see how the mechanisms of evolution inspire computational
methods.

1.1 Search Spaces and Fitness Landscapes

Searching in a “search space” is when you search among a collection of candidate solutions for a desired
solution. This is very common in computer science. There is usually a notion of “distance” between candidate
solutions in a search space. An example of this is Hammning distance - the number of locations at which
corresponding bits differ in genotypes (bit strings of length l).

1.2 Elements of Genetic Algorithms

There is no rigorous definition of a genetic algorithm. However most genetic algorithms have at least the
following elements:

• populations of chromosomes

• selection according to fitness - selects chromosomes in the population for reproduction, fitter chromo-
somes selected with higher probability

• crossover to produce random offspring - randomly choose locus and exchange subsequences after that
locus between two chromosomes to create two offspring, e.g. if we have 1000100 and 1111111 and locus
is 3, we get 1001111 and 1110100

• random mutation of new offspring - randomly flips bits in chromosome

Chromosomes are typically in the form of bit strings. Each chromosome can be thought of as a point in
the search space of candidate solutions. GA processes populations of chromosomes, successively replacing
one such population after another. GA most often requires a fitness function that assigns a score (fitness)
to each chromosome in the current population. Fitness of chromosomes depends on how well chromosomes
solve the problem at hand.

1.3 Simple Genetic Algorithm

Given a clearly defined problem to solve and bit string representation of candidate solutions, simple genetic
algorithm is as follows

1. Start with randomly generated population of n l-bit chromosomes (candidate solutions)

2. Calculate fitness f(x) of each chromosome x in population

3. Repeat until n offspring are created

2

ECE 4271 1.4 Genetic Algorithms and Traditional Search Methods

(a) Select pair of chromosomes from current population, select with probability based on fitness.
Select with replacement.

(b) With some crossover probability pc, cross over the pair at random chosen point. If no crossover,
form two offspring that are exact copies of parents.

(c) Mutate two offspring at each locus with probability pm and place resulting chromosomes into the
new population. If n is odd, one new population memeber can be discarded at random.

4. Replace current population with the new population

5. Go to step 2

Each iteration is called a generation. Entire set of generations is called a run.

Common selection is fitness-proportionate selection: the number of times an individual is expected to
reproduce is equal to its fitness divided by the average of fitnesses in the population.

1.4 Genetic Algorithms and Traditional Search Methods

Some meanings of “search”. First, search for stored data is to try and efficiently retrieve information
stored in computer memory (binary search). Search for paths to goals is to efficiently find a set of actions
that will move from a given initial state to a given goal (depth first search). Search for solutions is to
efficiently find a solution to a problem in a large space of candidate solutions (this is very general). These
are the kind of problems where genetic algorithms are used. We can see how the first is different than the
next two. When we utilize a GA we are never searching for a explicitly defined piece of information. For
the second problem, a tree style structure is typically used in the search. The general search for solutions
can be considered a superset of searching for paths to goals. Genetic algorithms are one of many methods
for searching for solutions problems. Other general methods include hill climbing, simulated annealing, and
tabu search.

All of the search for solutions general methods

1. generate a set of candidate solutions

2. evaluate candidate solutions according to some fitness criteria

3. decide on the basis of this evaluation which candidates will be kept and which will be discarded

4. produce further variants by using some kind of operators on surviving candidates

1.5 Some Applications of Genetic Algorithms

Genetic algorithms have been used in a wide variety of optimization tasks. These can include numerical
optimization and combinatorial optimization problems.

Machine learning problems including classification and prediction, and also using genetic algorithms to evolve
parts ot machine learning systems, i.e. weights in a neural network.

Genetic algorithms are used to model innovation, bidding strategies, and markets in economics.

In addition to the three above, others include automatic programming, immune systems, ecology, population
genetics, evolution and learning, and social systems.

An example from economics is the prisoner’s dilemma and game theory. A strategy for prisoner’s dilemma
games is TIT FOR TAT.

TIT FOR TAT: cooperate in the first game, do whatever the other player did it its move in the
previous game as your move in the next game.

3

ECE 4271 1.6 How Do Genetic Algorithms Work?

Genetic algorithms were used to develop strategies that could score better than the human developed TIT
FOR TAT. This doesn’t make it worse, because TIT FOR TAT works well for every game played, while the
genetic algorithms typically developed strategies that exploited weaknesses in the strategies it experienced
in its given environment. Conclusion to this was that GAs are as good at doing what evolution often
does: develop highly specialized adaptations to specific characteristics of an environment (Axelrod). In
more general/changing environments, research (Axelrod) found that GAs discovered strategies that were
essentially variants of TIT FOR TAT.

1.6 How Do Genetic Algorithms Work?

Genetic algorithms are simple to describe and program, but their behavior can be complicated. Many open
questions exist about how much they work and what types of problems they are best suited for.

Traditional theory of GAs is that GAs work by discovering, emphasizing, and recombining good “building
blocks” of solutions in a highly parallel fashion (building block hypothesis). Holland introduced the notion of
schemas to formalize these informal building blocks. A schema is a set of bit strings that can be described
by a template made up of ones, zeros, and asterisks (wild cards), e.g. H = 1 ∗ ∗ ∗ 1. H stands for hyperplane
in the l dimensional space of length l bit strings. String that fit the schema template H are said to be
instances of H. The number of defined bits in a schema is the number of non-asterisk bits. The defined
lenght of a schema is the destance between its outermost defined bits. Not every possible subset of the set

of length l bit strings can be described as a schema. There are 2l possible bit strings of length l, so 22l

possible subsets of strings, but there are only 3l possible schemas. Any given bit string of length l is an
instance of 2l different schemas. Any given population of n strings contains instances of between 2l and n ·2l
different schemas. GAs don’t explicitly represent or calculate estimates of schema average fitness, but GAs
behavior (in terms of increase and decrease in numbers of instances of given schemas in the population) can
be described as though it actually were calculating and storing the average fitnesses.

Define m(H, t) to be the number of instances of schema H at time t. d(H) is the defining length of H, l
is the length of bit strings in search space. pc is probability that single point crossover will be applied to a
string. û(H, t) is the observed average fitness of H at time t. f(x) is the fitness of x and f̄(t) is the average
fitness of the population at time t. Assume selection is carried out as described above: expected number of
offspring of string x is equal to f(x)/f̄(t). The expected number of instances of H at time t + 1 (ignoring
crossover and mutation) is

E(m(H, t+ 1)) =
∑
x∈H

f(x)

f̄(t)
=
û(H, t)

f̄(t)
m(H, t)

Schema H is said to “survive” under single point crossover if one of the offspring is also an instance of schema
H. A lower bound on the probability Sc(H) that H will survive single-point crossover is

Sc(H) ≥ 1− pc
(d(H)

l − 1

)
The probability of survival under crossover is higher for shorter schemas. Let pm be probability of any bit
being mutated. Sm(H), the probability that schema H will survive under mutation of an instance of H
is

Sm(H) = (1− pm)o(H)

where o(H) is the order of H (number of defined bits in H). The probability of survival under mutation
is higher for lower order schemas. Adding these effects to the expectation above, we arrive at the Schema
Theorem (Holland)

E(m(H, t+ 1)) ≥ û(H, t)

f̄(t)
m(H, t)

(
1− pc

d(H)

l − 1

)(
(1− p)o(H)

)
Common interpretation is that the theorem implies that short, lower order schemas whose average fitness
remains above the mean will receive exponentially increasing numbers of samples over time. Also, to make

4

ECE 4271

more formal, the building block hypothesis that goes along with this is that a genetic algorithm seeks
optimal performance through the juxtaposition of short, low-order, high-performance schemas, called the
building blocks. Here cross-over is believed to be major source of GAs power. Later we will see that this is
not the case (from Delchamps lectures).

In evaluating population of n strings, GA is implicitly estimating the average fitness of all schemas present
in the population and increasing/decreasing representation according to the Schema Theorem. This simul-
taneous implicit evaluation of large numbers of schemas in population of n strings is known as implicit
parallelism. Selection biases sampling procedure to schemas who’s fitness is estimated to be above average.
Schema Theorem and Building Block Hypothesis deal primarily with selection and crossover. Holland says
mutation serves to insure against loss of diversity. (Delchamps will show that there is more to it than
this).

2 Markov Chains

2.1 What is a Markov Chain?

Building blocks of a Markov chain are

• State space S, generally will be set of positive integers or finite set {1, 2, . . . ,M} for M > 0.

• For each i ∈ S, a set of one-step transition probabilities P (i, j) for j ∈ S. P (i, j) denotes the probability
that the Markov chain will be “in” state j at the next time step given that it is “in” state i now.
P (i, j) ≥ 0 for all i and j, and

∑
j∈S P (i, j) = 1 for every i.

• Initial distribution π(0) over states. πi(0) represents the probability that the Markov chain is in state
i at time 0, so πi(0) ≥ 0 for all i ∈ S and

∑
i∈S πi(0) = 1.

Markov Property For every n ∈ N and every i0, i1, . . . , in−1, i, and j ∈ S, the probability that the Markov
chain will be in state j at time n + 1 given that it is in state i at time n and state im at time m for
every 0 ≤ m < n is P (i, j).

Key point is the irrelevance of past history to computing the probability of making an i → j transition at
time n given that you know the chain is in state i at time n.

For any sequence of states i0, i1, . . . , in, the probability of seeing the Markov chain pass through these states
in order starting at time 0 is

πi0(0)P (i0, i1)P (i1, i2) · · ·P (in−1, in)

Define a run of a Markov chain as the particular infinite sequence of states it visits starting at time 0 as a
result of the various random events that determine the starting state and subsequent state transitions.

For any m > 0, define the m-step transition probabilities as follows: P (m)(i, j) is the probability that the
Markov chain visits state j at time m given that it started in state i at time 0. This is the same as the
probability that, m time steps from now, the chain will be in state j given that it is in state i now (no matter
what now is). We can inductively define recursive formula for m-step transition probabilities via

P (m+1)(i, j) =
∑
k∈S

P (m)(i, k)P (k, j) ∀ i, j ∈ S and m > 0

If M (number of states) is finite, form an M ×M matrix P from transition probabilities via

[P]ij = P (i, j), 1 ≤ i, j ≤M

Raising P to powers gives matrices of higher order transition probabilities.

P (m)(i, j) = [Pm]ij , 0 ≤ i, j ≤M, m > 0

5

ECE 4271 2.2 Random and non-random quantities; transient and recurrent states

2.2 Random and non-random quantities; transient and recurrent states

Most fundamental random quantity associated with a Markov chain is Xn, the state the Markov chain is in
at time n.

Prob{Xn1 = i1} =

{∑
j∈S πj(0)P (n1)(j, i1) n1 > 0

πi1(0) n1 = 0

The initial distribution and one-step transition probabilities determine the Markov chain completely.

For any two states i and j in S and any k > 0, define f
(k)
ij as the probability that the first time after time 0

that the chain visits state j is time k, given that the chain starts in state i at time 0 (f = first). If we take

i = j, we get f
(k)
jj , the probability that the first time the chain returns to state j starting from state j is k

time steps in the future.

For any states i and j set

rij =

∞∑
k=1

f
(k)
ij

rij is the probability that the chain will reach state j in finite time given that it starts in state i (r = return).
Setting i = j gives rjj , the probability that, starting from state j, the chain will return to state j in finite

time. f
(k)
ij and rij are non-random quantities.

An important random quantity is the first hitting time Tj , defined for any j ∈ S, Tj is the first positive time
that the chain visits state j. If chain follows path that never hits state j, Tj =∞.

Given any state i, any random quantity Z associated with Markov chain, and any possible value z for Z,
define

Probi{Z = z}

as the probability that Z = z given that the chain started in state i at time 0.

Define
Ei(Z)

as the expected value of Z given that the chain started in state i at time 0.

Probi{Tj = k} = f
(k)
ij

Observe:

• if rij = 0 then Probi{Tj =∞} = 1

• if rij = 1 then Probi{Tj <∞} = 1

• if the chain starting from state i has positive probability rij of hitting state j in finite time but rij < 1,
then Probi{Tj =∞} = 1− rij and Probi{Tj <∞} = rij

The Tj are called first hitting times for obvious reasons. If we start the chain off in state j, then we call Tj
the first return time for state j.

Useful fact: Standard formula for sum of geometric series gives

∞∑
m=1

m(1− p)m−1 = − d

dp

(1

1− (1− p)

)
=

1

p2

Another random quantity of interest is Nj(n), for any n > 0 and j ∈ S is the number of visits the Markov
chain makes to state j over time interval 1 ≤ m ≤ n. Nj(n) is a random quantity for every j and n since its
value depends on the path the Markov chain follows. Use Nj to denote total number of times the Markov
chain hits j after time 0,

Nj = lim
n→∞

Nj(n) ∀ j ∈ S

6

ECE 4271 2.3 Recurrence classes and limits of expected time averages

In particular, we don’t count being in state j at time 0 as contributing to Nj(n) or Nj .

Ei(Nj(n)) =

n∑
m=1

P (m)(i, j) ∀ i, j ∈ S

Set i = j to get

Ej(Nj(n)) =

n∑
m=1

P (m)(j, j) ∀ j ∈ S

Take limit n→∞ to get

Ei(Nj) =

∞∑
m=1

P (m)(i, j) ∀ i, j ∈ S

Recurrent a state is recurrent iff rjj = 1. I.e. j is a recurrent state if and only the Markov chain starting
in state j will return to j in finite time with probability 1.

Transient a state is transient iff rjj < 1. I.e. state j is transient if and only there’s positive probability
that the chain, having started in j, will never return to j.

Let ST be the set of transient states and SR be the set of recurrent states. A first decomposition of the state
space S of the Markov chain is

S = ST ∪ SR
Theorem(s) State j is recurrent iff

Probj{Nj =∞} = 1

If j is recurrent, then for any state i

Ei(Nj) =

{
0 if rij = 0

∞ if rij > 0

State j is transient if and only if
Probj{Nj <∞} = 1

If j is transient, then for any state i

Ei(Nj) =
rij

1− rjj

Fact If i is recurrent and i → j, then j is also recurrent and j → i. Furthermore, rij = rji = 1. i → j
means that, with positive probability, the chain starting in state i will hit state j in finite time.

2.3 Recurrence classes and limits of expected time averages

We’ve learned so far that regardless of the initial distribution, the Markov chain will never visit a transient
state infinitely often and that if the chain ever visits a recurrent state j, it will revisit j infinitely often.

Irreducible A set of states C is closed if and only if for every i ∈ C, rik = 0 when k /∈ C. A closed set C
of states is said to be irreducible if and only if i→ j for every i and j in C. If the entire state space S
is irreducible, we say that the Markov chain is irreducible.

The chain can’t escape from a closed set C of states once it is in C. Think of any closed set of states C
as constituting its own private little Markov chain with state space C and transition probabilities {P (i, j) :
i, j ∈ C}.

Recurrence class For any recurrent state i, define the recurrence class of i as the set of all j ∈ S such
that i→ j. Two different recurrence classes cannot intersect.

7

ECE 4271 2.3 Recurrence classes and limits of expected time averages

Refining our decomposition of Markov chains above, we have the set SR of recurrent states splits into the
disjoint union of one or more recurrence classes. Each of these is a closed, irreducible set of states.

Mean first return time for state j is mj = Ej(Tj). Since

Probj{Tj = k} = f
(k)
jj ∀ k > 0

have

Ej(Tj) =

∞∑
k=1

kf
(k)
jj ∀ j ∈ S

If j is a transient state, then by definition mj = ∞, it is also still possible that mj = ∞ for a recurrent
state...

Positively recurrent A recurrent state j is positively recurrent if and only if mj <∞.

Null recurrent A recurrent state j is null recurrent if and only if mj =∞. How? mj =∞ occurs, roughly
speaking, when fjj(k) doesn’t go to zero fast enough as k →∞. If with significant probability you have
to wait a very long time to return to state j, then it’s possible that, on average, you’ll wait essentially
forever.

Fact For any recurrence class C, either every j ∈ C is positively recurrent or every j ∈ C is null-recurrent.

Theorem With notation as we have above,

• If j is a transient state, then

lim
n→∞

Ej(Nj(n))

n
= lim
n→∞

1

n

n∑
m=1

P (m)(j, j) = 0

• If j is a recurrent state, then

lim
n→∞

Ej(Nj(n))

n
= lim
n→∞

1

n

n∑
m=1

P (m)(j, j) =
1

mj

If j is null-recurrent, then the long-term expected fraction of the time the chain spends in state j is
zero, just as it would have been if j were transient.

Theorem With notation as we have above,

• If j is a transient state, then for any state i

lim
n→∞

Ei(Nj(n))

n
= lim
n→∞

1

n

n∑
m=1

P (m)(i, j) = 0

• If j is a recurrent state, then for any state i

lim
n→∞

Ei(Nj(n))

n
= lim
n→∞

1

n

n∑
m=1

P (m)(i, j) =
rij
mj

Corollary (to theorem above) If the number of states in a Markov chain is finite, then the chain has at
least one recurrent state and no null-recurrent states.

8

ECE 4271 2.4 Stationary distributions

2.4 Stationary distributions

For each m, π(m) describes the distribution over states of the Markov chain, in the sense that πi(m), for
each i ∈ S (S is set of states), is the probability that we are in state i at time m (i.e., after m steps on
the chain). The distributions follow a simple recursion in m. To find πj(m + 1), we can use transition
probabilities P (i, j) as follows

πj(m+ 1) =
∑
i∈S

πi(m)P (i, j)

for every j ∈ S and m > 0. It follows by induction that

πj(m) =
∑
i∈S

πi(0)P (m)(i, j)

for every j ∈ S and m > 0.

At any time m ≥ 0, say Xm is the state the Markov chain is in at time m. For each i ∈ S and m ≥ 0, the
probability Xm = i is πi(m).

Stationary Distribution A vector π̄ = (π̄i)i∈S is a stationary distribution for the Markov chain with
transition probabilities P (i, j) iff π̄i ≥ 0 ∀ i ∈ S,

∑
i∈S π̄i = 1, and

π̄j =
∑
i∈S

π̄iP (i, j) ∀ j ∈ S

If π̄ is a stationary distribution for a Markov chain in the sense of the definition directly above, and we set
π(0) = π̄, then clearly π(m) = π̄ for every m > 0 because of the recursion above. Thus again by induction,
for every m > 0 and every stationary distribution π̄ we have

π̄j =
∑
i∈S

π̄iP
(m)(i, j) ∀ j ∈ S

A Markov chain can have many stationary distributions, or exactly one, or none at all.

Theorem If π̄ is a stationary distribution, then π̄j = 0 if j is a transient or null-recurrent state.

This asserts that any stationary distribution π̄ for a Markov chain must be concentrated on the set of
positively recurrent states in the sense that π̄j > 0 only if j is positively recurrent. A Markov chain lacking
positively recurrent states has no stationary distributions. Also, any Markov chain with at least one positively
recurrent state has at least one stationary distribution.

Positively Recurrent Class Consider a Markov chain that has at least one positively recurrent state
and therefore, at least one recurrence class C consisting solely of positively recurrent states, such a
recurrence class C is a positively recurrent class.

Lemma Suppose a Markov chain has a positively recurrent class C. Define a distribution π̄ for the Markov
chain by setting

π̄j =

{
1
mj

= qj if j ∈ C
0 if j /∈ C

Then π̄ is a stationary distribution for the Markov chain. Furthermore, π̄ is concentrated on the
recurrence class C since π̄j = 0 for j /∈ C.

Theorem Suppose a Markov chain has at least one positively recurrent state. For each positively recurrent
class C, the chain has a unique stationary distribution π̄C concentrated on C. The distribution π̄C is
given by

π̄C =

{
1
mj

if j ∈ C
0 if j /∈ C

where mj = Ej(Tj) is the expected return time to state j.

9

ECE 4271 2.5 Convergence of time averages with probability 1

Corollary If π̄ is a stationary distribution for a Markov chain, then for any positively recurrent class C,
either π̄ = 0 for every j ∈ C or

π̄j∑
i∈C π̄i

= π̄Cj ∀ j ∈ C

Consider a chain that has at least one positively recurrent class. Let Π be the set of all positively recurrent
classes. We can use the Corollary above as a recipe for generating all the stationary distributions for a
Markov chain. Corollary states that every stationary distribution π̄ for the chain takes the form

π̄ =
∑
C∈Π

λC π̄
C

where λC ≥ 0 ∀ C and
∑
C∈Π λC = 1. For each C

λC =
∑
j∈C

π̄j

Every stationary distribution for the chain is a convex combination of the stationary distributions concen-
trated on the various recurrence classes.

2.5 Convergence of time averages with probability 1

Suppose during a run of a Markov chain you collect a certain amount of money every time you hit a state.
Say you collect f(i) whenever you are in state i. The average amount of money you collect per unit time on
a given run up through time n is

Sn(f) =
1

n

n∑
m=1

f(Xm)

where Xm is the state of the Markov chain at time m. If we define an indicator χ{j} for any state j as
follows

χ{j}(i) =

{
1 if i = j

0 else

then

Sn(χ{j}) =
1

n
Nj(n)

is the fraction of the time the Markov chain spends in state j during the time interval 1 ≤ m ≤ n.

Strong Law of Large Numbers (SLLN) Let {Zm : m ≥ 1} be a sequence of independent real-valued
random variables with common probability distribution ρ. Let Eρ(Z) be the common expected value
of all the Zm, and assume Eρ(Z) is finite. Then, with probability 1,

lim
n→∞

1

n

n∑
m=1

Zm = Eρ(Z)

Theorem For an arbitrary homogeneous Markov chain with countable state space, and with notation as
above, Markov chain,

• if j is a transient state, then for any state i,

lim
n→∞

Nj(n)

n
= 0

for every path emanating from i with the possible exception of a set of paths of probability zero.

10

ECE 4271 2.6 Convergence of distributions

• if j is a recurrent state, the for any state i,

lim
n→∞

Nj(n)

n
=

1

mj

for any path emanating from i that hits j in finite time, and

lim
n→∞

Nj(n)

n
= 0

for any path emanating from i that doesn’t hit j, both assertions holding with the possible
exception of a set of paths of probability zero.

Theorem Given a Markov chain with finite state space S, suppose the chain has only one recurrence class.
Then for any f : S → R and for any initial distribution π(0),

Sn(f) =
1

n

n∑
m=1

f(Xm)

converges with probability 1 as n→∞ to

Eπ̄∗(f) =
∑
j∈S

f(j)π̄∗j

where X(m) is the state of the Markov chain at time m and π̄∗ is the unique stationary distribution
for the Markov chain.

If a finite-state Markov chain has multiple recurrence classes, the limiting behavior of Sn(f) depends on the
initial distribution for the Markov chain.

Theorem Suppose a Markov chain with state space S is irreducible and has only positively recurrent states.
Let π∗ be the unique stationary distribution guaranteed by the Theorem above. Let f : S → R be any
function for which Eπ∗(f) is finite. Then for any initial distribution π(0),

Sn(f) =
1

n

n∑
m=1

f(Xm)

converges with probability 1 as n → ∞ to Eπ∗(f), where X(m) is the state of the Markov chain at
time m.

2.6 Convergence of distributions

Periodic Let d > 1 be an integer. A state j of a Markov chain is periodic of period d iff d is the greatest
common divisor of the set of integers m > 0 for which P (m)(j, j) > 0.

Aperiodic State j is aperiodic iff the greatest common divisor of the set of integers m > 0 for which
P (m)(j, j) > 0 is 1.

Idea: Given a state j ∈ S, list all m > 0 for which it’s possible to make a j-to-j transition in exactly m
steps. For these and only these m-values, P (m)(j, j) > 0. If all are multiples of some integer d > 1, then
state j is periodic. If no such d exists, j is aperiodic. Periodic states can be either transient or recurrent
and recurrent periodic states can be either positively recurrent or null-recurrent.

Fact Let i be a recurrent state with period d > 1. If i→ j, then j is also periodic with period d.

This Fact implies that if i is an aperiodic recurrent state, then every j in the recurrence class of i is also
aperiodic. Furthermore, every state in a periodic recurrence class has the same period, so we can talk about
things like “d-periodic recurrence classes”.

11

ECE 4271 2.6 Convergence of distributions

Fact If j is an aperiodic state and i is any state for which i→ j, there ∃ M > 0 such that P (m)(i, j) > 0 ∀
m ≥M .

Theorem Suppose a Markov chain with state space S is irreducible and has only aperiodic positively
recurrent states. Let π∗ be the unique stationary distribution (guaranteed by Theorem above). Then

lim
n→∞

P (n)(i, j) =
1

mj
= π∗j ∀ i, j ∈ S

It follows that for any initial distribution π(0), π(n) converges to π∗ as n→∞ in the sense that

lim
n→∞

πj(n) = π∗j

for every j ∈ S.

Theorem Suppose a Markov chain with state space S is irreducible and has only aperiodic positively
recurrent states. Let π∗ be the unique stationary distribution (guaranteed by Theorem above). Then,
for any initial distribution π(0), π(n) converges to π∗ as n→∞ in the sense that

lim
n→∞

supA⊂S

∣∣∣∣∣∣
∑
j∈A

(πj(n)− π∗j)

∣∣∣∣∣∣
 = 0

Theorem Suppose every state of a Markov chain is positively recurrent and aperiodic. Then

lim
n→∞

P (n)(i, j) =

{
1
mj

when i and j are in the same recurrence class

0 else

Furthermore, for any initial distibution π(0), π(n) converges as n→∞ in the sense that

lim
n→∞

πj(n) =
∑
C∈Π

λC π̄
C
j ∀ j ∈ S

Where Π is the set of all recurrence classes and

λC =
∑
i∈C

πi(0) ∀ C ∈ Π

For any recurrence class C, λC is the total probability that the initial distribution π(0) allots to C. The
limiting distribution allots the same total probability to C, but in general it’s spread differently among the
states in C. If there are transient states in the Markov chain, λC will have different values.

Absorption probability For each transient state i and recurrence class C, we can define rCi as the common
value of rij for j ∈ C. rCi is the absorption probability of the transient state i into the recurrence class
C.

Theorem Suppose every state of a Markov chain is either transient or positively recurrent and aperiodic.
Let ST be the set of transient states and SR be the set of recurrent states. Then for any i ∈ ST

lim
n→∞

P (n)(i, j) =

{
0 when j ∈ ST
rij
mj

when j ∈ SR

Furthermore, for any initial distribution π(0), π(n) converges as n→∞ in the sense that

lim
n→∞

πj(n) =
∑
C∈Π

λC π̄
C
j ∀ j ∈ S

Where Π is the set of all recurrence classes and

λC =
∑
i∈C

πi(0) +
∑
i∈ST

πi(0)rCi ∀ C ∈ Π

In particular, limn→∞ πj(n) = 0 when j ∈ ST .

12

ECE 4271

Fact If i and j are states with period d that lie in the same recurrence class, then ∃ an integer ρij , with
0 ≤ ρij < d, such that when n is sufficiently large, P (n)(i, j) > 0 iff n = qd + ρij for some positive
integer q.

Theorem Suppose a Markov chain with state space S is irreducible and has only positively recurrent states
with period d > 1. Let π∗ be the unique stationary distribution (guaranteed by Theorem above).
Then, for every i and j in S, ∃ an integer ρij , with 0 ≤ ρij < d, such that P (n)(i, j) > 0 when n is
sufficiently large iff n = qd+ ρij for some integer q > 0. Futhermore for every i and j,

lim
n→∞

P (qd+ρij)(i, j) = dπ∗j

3 Metropolis

3.1 Metropolis-Hastings Algorithm

You have a large finite set S = {1, 2, 3, . . . ,M}. Let π be probability distribution on S, assume πj > 0 for
all j ∈ S. Goal is to compute expected values of the form

Eπ(f) =
∑
∈S

f(j)πj

for various functions f : S → R. You can only know π up to an arbitrary multiplicative constant - you might
know only pj = c0πj for every j ∈ S for some unknown c0 > 0. Note

c0 =
∑
j∈S

pj

because
∑
j∈S πj = 1. However, S might be so large and the formulas for the pj so complicated that

computing c0 is intractable. In order to find Eπ(f), it suffices to draw an independent sequence of samples
{Zm : m > 0} from S distributed according to π. The Strong Law of Large Numbers implies that with
probability 1,

lim
n→∞

1

n

n∑
m=1

f(Zm) = Eπ(f)

Suppose we could construct an irreducible Markov chain with state space S whose unique stationary distri-
bution π∗ was π. If Xm is the state of the Markov chain at time m > 0 starting from any initial state in S,
the various limit theorems for Markov chains guarantee that

lim
n→∞

1

n

n∑
m=1

f(Xm) = Eπ∗(f) = Eπ(f)

with probability 1. The multi-set of states you obtain by recording the various states visited by a typical
Markov-chain run {Xn : n > 0} will be distributed over S according to π. Coming up with such a Markov
chain would not only generate a population of points from S distributed according to π, but would also
provide a recursive way of approximating Eπ(f) for any f : simply run the Markov chain and apply the
equation directly above. The Metropolis- Hastings algorithm provides an ingenious technique for constructing
irreducible such chains that have π as their (necessarily unique) stationary distribution.

First some preliminaries. If π̄ is any stationary distribution for the Markov chain, then∑
i∈S

π̄iP (i, j) = π̄j ∀ j ∈ S

13

ECE 4271

Balance conditions Every stationary distribution satisfies the following conditions (the balance conditions
on π̄. ∑

i∈S
π̄iP (i, j) =

(∑
i∈S

P (j, i)

)
π̄j =

∑
i∈S

P (j, i)π̄j

If π is any distribution that satisfies the balance conditions, then π is a stationary distribution because∑
i∈S

πiP (i, j) =

(∑
i∈S

P (j, i)

)
πj = πj ∀ j ∈ S

Detailed balance conditions One way, but not the only way, for a distribution π to satisfy the balance
conditions is for the two infinite sums in the balance conditions to be equal term-by-term, i.e.

πiP (i, j) = P (j, i)πj ∀ i, j ∈ S

these conditions are the detailed balance conditions. It follows that if π satisfies the detailed balance
conditions, then π is a stationary distribution for the Markov chain.

Back to our original problem. We have π and S and we have access to pj = coπj for some co > 0 like above.
Let Q(i, j) be any set of transition probabilities of a Markov chain that satisfies

• Q(i, j) = Q(j, i) ∀ i, j ∈ S

• The Markov chain with transition probabilities Q(i, j) is irreducible.

Many Q’s are possible, simplest is random walk on S. Now define P (i, j) for every i and j in S as fol-
lows

P (i, j) =


Q(i, j) if i 6= j and pj ≥ pi
Q(i, j)

pj
pi

if i 6= j and pj < pi

Q(i, i) +
∑
j∈Si

Q(i, j)
(

1− pj
pi

)
if i = j

where Si = {j ∈ S : pj < pi}. It turns out that this makes an irreducible Markov chain on S with P (i, j) as
the transition probabilities, and with π as the stationary distribution. By running the chain starting from
an arbitrary initial state we can use the methodology describe above to approximate Eπ(f) for functions
f : S → R. We can also produce a set P of samples from S distributed according to π. To construct P use
this algorithm:

• Initialization: Set θ0 = i, where i ∈ S is an arbitrary state. Set P = {θ0}. Proceed to Proposal Step.

• Proposal Step: Given θm, choose ψm+1 ∈ S according to the transition probabilities Q(i, j); that is,
set ψm+1 = j with probability Q(i, j) when θm = i. Proceed to the Accept-Reject Step.

• Accept-Reject Step: When θm = i and ψm+1 = j,

– If pj ≥ pi, set θm+1 = ψm+1.

– If pj < pi, set θm+1 = ψm+1 with probability
pj
pi

and set θm+1 = θm with probability 1− pj
pi

.

Add θm+1 to P and return to Proposal Step.

4 Schema Theorem

Everything that follows pertains to a standard genetic algorithm with population size n (an even number),
string length L, mutation probability pm, and one-point crossover probability pc. The population at time t
is P (t), the selection is fitness-proportional, and the (strictly positive) fitness function is f .

Fitness-proportional selection gives

psel(x) =
f(x)∑

y∈P (t) f(y)

14

ECE 4271 4.1 New lower bound

as the probability that x is selected on any given parental draw for any individual x ∈ P (t).

Subset Selection Lemma If Q is any subset of P (t), then the probability that any given parental draw
yields a member of Q is

psel(Q) =

∑
x∈Q f(x)∑
y∈P (t) f(y)

Consequently, the expected number of members of Q selected as parents for P (t+ 1) is

npsel(Q) = n

(∑
x∈Q f(x)∑
y∈P (t) f(y)

)
= |Q|

(
1
|Q|
∑
x∈Q f(x)

1
n

∑
y∈P (t) f(y)

)

where |Q| is the number of individuals in Q.

Order The order of a schema H, written o(H), is the number of defined bits (i.e. non-stars) in the defining
symbol for H.

Defining length The defining length of a schema H, written d(H), is the “distance” between the leftmost
and rightmost defined bits in the defining symbol for H.

4.1 New lower bound

For schema H, and Q = H ∩ P (t), (Q is just the subset of all H-representatives in P (t)), the lower bound
on expected number of members of H selected as parents for P (t+ 1) is as follows

E(|H ∩ P (t+ 1)|) ≥ npsel(Q)

(
1− pc

d(H)

L− 1

)
(1− pm)o(H) + n(psel(Q))2pc

d(H)

L− 1
(1− pm)o(H)

The first term on the right-hand side of this is the same as the lower bound in Mitchell’s version of the
Schema Theorem (after accounting for differences in notation), which is mentioned in Section 1 above.
The additional nonnegative term (second term of right-hand side of above) provides a “tighter” lower bound
than the “official” Schema Theorem that was given in the book.

5 Game Theory

n-player finite strategic-form game An n-player finite strategic-form game consists of the following:

• A set of n agents that we’ll call Player 1, Player 2, . . . , Player n

• For each i ∈ {1, 2, . . . , n}, a finite set of possible actions Ai for Player i

• For each i ∈ {1, 2, . . . , n}, a payoff function

ui : A1 ×A2 × · · · ×An → R

where ui(a1, a2, . . . , an) represents the payoff to Player i given that each Player j takes action
aj ∈ Aj , 1 ≤ j ≤ n.

The possible outcomes of an n-player game are in one-to-one correspondence with n-tuples (a1, a2, . . . , an)
of actions, where ai ∈ Ai for all i.

An important and surprisingly delicate assumption lurking behind the definition of an n-player finite
strategic-form game is that the structure of the game is common knowledge to all the players, every player
knows the actions available to all the players and knows every player’s payoff function, but that every player
knows that every player knows these things, and that every player knows that every player knows that every
player knows these things, and so on ad infinitum.

15

ECE 4271 5.1 Example Games

5.1 Example Games

When a game is played, Player 1’s action determines the row and Player 2’s determines the column, and the
corresponding matrix entry describes the game outcome that results. The ordered pair of numbers in the
matrix entry represents

(payoff to Player 1, payoff to Player 2)

arising from the outcome.

Prisoners’ Dilemma Perhaps the most famous game of all. Payoffs are

C D
C (3,3) (0,5)
D (5,0) (1,1)

Even though both would fare better if both took action C, the constraint that they come up with their
strategies independently and in isolation forces the unfortunate (D, D) outcome.

Battle of the Sexes/Brothers Payoffs are

C B
C (3,2) (1,1)
B (1,1) (2,3)

Battle of the Brothers has no particular outcome that we expect to see when rational players get around to
playing the game.

Matching Pennies The idea is that both players turn a hidden penny either heads-up (action H) or
tails-up (action T) when it comes time to play the game. Then they unveil their hidden pennies, and Player
1 collects both pennies if the faces match while Player 2 collects both pennies if the faces disagree. Payoffs
are

H T
H (1,-1) (-1,1)
T (-1,1) (1,-1)

You should play this game with the mixed strategy (defined below) .5H + .5T . The expected payoff for the
game is 0.

5.2 Actions, Strategies, Replies

Distinction between actions and strategies: strategies are plans of action. Strategies described for the
Prisoners’ Dilemma and Battle of the Brothers are plans to take a single specific action. Another kind of
strategy could entail randomization. Randomized strategies play a central role in game theory.

Pure strategy In an n-player finite strategic-form game, a pure strategy si for Player i is a plan to take
some specific action in Ai once the game is played. A pure-strategy profile (s1, s2, . . . , sn) is a choice
for each player j of a pure strategy sj .

Mixed strategy A mixed strategy σi for Player i is a probability distribution over action set Ai that has
the following strategic interpretation: once the game is played, Player i will choose his action randomly
from Ai in accordance with the probability distribution σi. The support of such a mixed strategy σi,
written supp(σi), is the set of actions in Ai to which σi assigns positive probability. A mixed-strategy
profile (σ1, σ2, . . . , σn) is an independent choice for each player j of a mixed strategy σj .

16

ECE 4271 5.2 Actions, Strategies, Replies

Slight abuse of notation, say ui(σ1, σ2, . . . , σn) is the expected payoff to Player i given that the players play
mixed-strategy profile (σ1, σ2, . . . , σn). Expected payoffs resulting from a mixed-strategy profile are easy to
calculate given the independence of the players’ mixed-strategy choices.

In an n-player game, use the notation σ−i to denote a choice of mixed strategy for all players other than
Player i and ui(ai, σ−i) to denote the expected payoff to Player i when he takes action ai ∈ Ai and the other
players play according to σ−i. Also use ui(σi, σ−i) to denote the expected payoff to Player i when he plays
mixed strategy σi and the other players play according to σ−i.

Best-reply action A best-reply action for Player i against σ−i is an action âi ∈ Ai for Player i that satisfies

ui(âi, σ−i) ≥ ui(ai, σ−i) ∀ ai ∈ Ai

Pure-strategy best reply A pure-strategy best reply for Player i against σ−i is a pure strategy ŝi for
Player i of the form “Play âi,” where âi is a best-reply action for Player i against σ−i.

Mixed-strategy best reply A mixed-strategy best reply for Player i against σ−i is a mixed strategy σ̂i for
Player i that satisfies

ui(σ̂i, σ−i) ≥ ui(σi, σ−i)

for every mixed strategy σi for Player i.

Take a look at best-reply actions and strategies in the example games we’ve considered so far.

Prisoners’ Dilemma The pure strategy “Play D” is thus the unique pure-strategy best reply for each
player to any mixed (or pure) strategy by the other player.

Battle of Brothers If you’re Player 1 in the Battle of the Brothers and Player 2 is playing mixed strat-
egy

σ2 = qC + (1− q)B

• C is the unique best-reply action for you against σ2 if q > 1/3. “Play C” is a pure-strategy best-reply
for Player 1 if and only if q ≥ 1/3.

• B is the unique best-reply action for you if q < 1/3. “Play B” is a pure-strategy best reply for Player
1 if and only if q ≤ 1/3.

• Both C and B are best-reply actions when q = 1/3. When q = 1/3, the mixed strategy pC + (1− p)B
is a best-reply strategy for Player 1 ∀ p ∈ [0, 1].

For Player 2, if Player 1 is playing mixed strategy

σ1 = pC + (1− p)B

• C is the unique best-reply action for you against σ1 if p < 2/3. “Play C” is a pure-strategy best-reply
for Player 2 if and only if p ≤ 2/3.

• B is the unique best-reply action for you if p > 2/3. “Play B” is a pure-strategy best reply for Player
2 if and only if p ≥ 2/3.

• Both C and B are best-reply actions when p = 2/3. When p = 2/3, the mixed strategy qC + (1− q)B
is a best-reply strategy for Player 2 for all q ∈ [0, 1].

Matching Pennies If you are Player 1 and Player 2 is playing mixed strategy

σ2 = qH + (1− q)T

• H is the unique best-reply action for you against σ2 if q > 1/2. “Play H” is a pure-strategy best-reply
for Player 1 if and only if q ≥ 1/2.

17

ECE 4271 5.3 Nash equilibria

• T is the unique best-reply action for you if q < 1/2. “Play T” is a pure-strategy best reply for Player
1 if and only if q ≤ 1/2.

• Both H and T are best-reply actions when q = 1/2. When q = 1/2, the mixed strategy pH + (1− p)T
is a best-reply strategy for Player 1 for all p ∈ [0, 1].

For Player 2, Player 1 is playing mixed strategy

σ1 = pH + (1− p)T

• H is the unique best-reply action for you against σ1 if p < 1/2. “Play H” is a pure-strategy best-reply
for Player 2 if and only if p ≤ 1/2.

• T is the unique best-reply action for you if p > 1/2. “Play T” is a pure-strategy best reply for Player
2 if and only if p ≥ 1/2.

• Both H and T are best-reply actions when p = 1/2. When p = 1/2, the mixed strategy qH + (1− q)T
is a best-reply strategy for Player 2 for all q ∈ [0, 1].

By convention, Player 1’s mixed strategy depends on p, Player 2’s mixed strategy depends on q.

5.3 Nash equilibria

Fact A mixed strategy σ̂i for Player i is a mixed-strategy best reply against σ−i if and only if every action
in supp(σ̂i) is a best-reply action for Player i against σ−i.

Pure-strategy Nash equilibrium A pure-strategy profile s∗ = (s∗1, s
∗
2, . . . , s

∗
n) in an n-person game is a

pure-strategy Nash equilibrium or PSNE when, for each i, s∗i is a pure-strategy best-reply to s∗−i.

Nash equilibrium A mixed-strategy profile σ∗ = (σ∗1 , σ
∗
2 , . . . , σ

∗
n) in an n-person game is a Nash equilibrium

when, for each i, σ∗i is a mixed-strategy best-reply to σ∗−i.

One useful way to evaluate a pure- or mixed-strategy profile σ∗ to see whether it’s a Nash equilibrium is to
ask yourself the following question(s): if I were Player i, and all the other players announced what strategies
they were playing, would I have any incentive to change my strategy? If the answer for every i is no, then
σ∗ is a Nash equilibrium. If any player has reason to switch, it’s back to the drawing board.

Theorem Every finite strategic-form game has at least one Nash equilibrium.

A good way to go about computing all the Nash equilibria is to look first for PSNE and then for mixed-
strategy Nash equilibria. Results for example games are as follows.

Prisoners’ Dilemma

• PSNE: (D,D)

• MSNE: none

Battle of the Brothers

• PSNE: (C, C) and (B, B)

• MSNE: (σ∗1 , σ
∗
2) where σ∗1 = (2/3)C + (1/3)B, σ∗2 = (1/3)C + (2/3)B

Matching Pennies

• PSNE: none

• MSNE: (σ∗1 , σ
∗
2) where σ∗1 = σ∗1 = (1/2)H + (1/2)T

18

ECE 4271 5.3 Nash equilibria

Hawk Dove Game A new example game. Payoffs are

H D
H (-25,-25) (50,0)
D (0,50) (15,15)

• PSNE: (H,D) and (D,H)

• MSNE: (σ∗1 , σ
∗
2), where σ∗1 = σ∗2 = (7/12)H + (5/12)D.

Scissors-Paper-Rock One final example game is this differently named version of Rock-Paper-Scissors.
Payoffs are

S P R
S (1,1) (2,0) (0,2)
P (0,2) (1,1) (2,0)
R (2,0) (0,2) (1,1)

• PSNE: none, can check by trying/comparing all possibilities

• MSNE: σ∗ = (σ∗1 , σ
∗
2) = ((1/3)S + (1/3)P + (1/3)R, (1/3)S + (1/3)P + (1/3)R)

Chain Store Game (aka Market Entry), with payoffs as follows

A R
E (2,2) (-1,-1)
N (0,4) (0,4)

Player 2 owns a Home Depot in some market. Player 1 is trying to decide whether to start a Lowe’s in the
same market. If Player 1 takes action E, he enters (i.e., opens his store); if Player 1 takes action N, he doesn’t
enter. Player 2 can plan either to accommodate (action A), which would entail sharing the customers in the
market with Player 1 if Player 1 enters, or to retaliate (action R) against an entering Player 1 by starting
a price war that costs both players. Game has two PSNE (E, A) and (N, R). It also has a bunch of Nash
equilibria of the form

σ∗ = (σ∗1 , σ
∗
2) = (N, qA+ (1− q)R)

with 0 ≤ q ≤ 1/3. The equilibria here are sketchy.

Trembling-hand perfect A Nash equilibrium

σ∗ = (σ∗1 , σ
∗
2 , . . . , σ

∗
n)

in an n-player game is trembling-hand perfect when ∃ a sequence of strategy profiles {σk = (σk1 , . . . , σ
k
n)}

that converges to σ∗ as k →∞, satisfying

supp(σkj) = Aj ∀ j, k

and for which σ∗i is a best reply to σk−i for all i.

This is due to Reinhard Selten. His trembling-hand terminology refers to “possible mistakes” by players
when they implement their strategies. In a trembling-hand perfect equilibrium, Player i’s strategy would
also be a best reply for Player i against a mixed-strategy profile for the other players that calls for all of
them to play all their available actions with at least small positive probability. It happens that every finite
strategic-form game possesses at least one trembling- hand perfect Nash equilibrium.

The only trembling-hand perfect Nash equilibrium of the chain store game is (E,A).

19

ECE 4271 5.4 Iterated Prisoners’ Dilemma

5.4 Iterated Prisoners’ Dilemma

In a repeated game, the same agents play the same strategic-form game - called the stage game - over and
over again. The stage game in the Iterated Prisoners’ Dilemma (IPD) is the Prisoners’ Dilemma game.

A technique called backward induction enables humble agents like us to reason about how rational play-
ers might play the many-stage IPD. The only Nash-equilibrium outcome of the twice-repeated Prisoners’
Dilemma is for both players to play D in both stages.

In a repeated game, we define outcome a bit differently than in strategic-form games, namely as a sequence
of outcomes of the stage game.

In the IPD with K stages, where K > 2, we assume that both players observe and remember the outcomes of
all the stages as they occur. A pure strategy for a player in the K-stage IPD consists of quite a complicated
plan of action, namely

• a pure-strategy plan of action for the first stage, of which two are possible, and

• for each k, 1 ≤ k < K, a mapping from the set of possible outcomes of stages 1 through k to the set
of pure-strategy plans of action for the (k + 1)th stage.

For K = 3, player has 2×16×216 = 221 pure strategies. As K gets larger, the number of pure strategies grows
rapidly, to say the least, but backward induction can serve to make analyzing these situations possible. Via
backward induction, as in the two-stage IPD, a run of (D,D) outcomes is the only Nash-equilibrium outcome
of the K-stage IPD.

Some strategies for IPD.

Define a pure-strategy Nash equilibrium for this game as any strategy profile (s∗1, s
∗
2) that satisfies the

following criteria: no strategy s1 for user 1 gives him higher long-term average payoff than s∗1 when user 2
is playing s∗2, and no strategy s2 for user 2 gives him higher long-term average payoff than s∗2 when user 1
is playing s∗1.

Relentless Punishment: Play C on Day 1 and keep playing C unless the other user plays D on some day,
and if that happens play D on every day after that. If both users play the Relentless Punishment strategy,
then neither user has an incentive to switch, thus the strategy profile wherein both players play Relentless
Punishment is therefore a Nash equilibrium.

Forgiving Punishment:

• Phase 1: Play C on Day 1 and keep playing C unless the other user plays D on some day, and if that
happens switch to Phase 2.

• Phase 2: Play D for two days and return to Phase 1.

Neither player has an incentive not to play the Forgiving Punishment strategy given that the other player
is playing it, so the strategy profile wherein both players play Forgiving Punishment is a Nash-equilibrium
profile. Like the Relentless Punishment, it results in all (C, C) outcomes when both players stick to it.

6 Evolutionarily Stable Strategy Concepts

John Maynard Smith, a British evolutionary biologist, came up with the ESS idea even before he learned
about Nash equilibria.

Setup is a 2-player finite symmetric game. In such a game, each player has the same finite action space A,
and we can describe the payoffs using a single function u : A × A → R as follows: for each a and a′ in A,

20

ECE 4271

u(a, a′) is the payoff to a player against a′ player. Thus if A = {a1, . . . , am} and

σ = p1a1 + p2a2 + · · ·+ pmam

is a mixed strategy for either player, the expected payoff to the other player when he plays action a against
σ is

u(a, σ) = p1u(a, a1) + p2u(a, a2) + · · ·+ pmu(a, am)

If that other player instead plays a mixed strategy

σ′ = q1a1 + q2a2 + · · ·+ qmam

against σ, he gets expected payoff

u(σ′, σ) =

m∑
i=1

m∑
j=1

qipju(ai, aj)

Maynard Smith’s scenario is as follows. Every agent in large population of agents is playing the same pure
or mixed strategy σ∗ from a finite symmetric game. The agents meet at random in “pairwise matches” with
each other to play the game. Call σ∗ the incumbent strategy. Suppose that, somehow, a small fraction of
players of some other strategy σ appears in population. The new population, the post-entry population, has
a small fraction ε of σ-players and a large fraction (1− ε) of σ∗-players. The strategy σ is called the invading
strategy. If a σ∗-player plays a random match with a member of the post entry population, its expected
payoff will therefore be

(1− ε)u(σ∗, σ∗) + εu(σ∗, σ)

This is the same as the payoff to a σ∗-player against a player mixing via (1− ε)σ∗ + εσ, i.e.

(1− ε)u(σ∗, σ∗) + εu(σ∗, σ) = u(σ∗, (1− ε)σ∗ + εσ)

Similarly, if a σ-player plays such a random match against a randomly chosen opponent from the post-entry
population, its expected payoff will be

(1− ε)u(σ, σ∗) + εu(σ, σ) = u(σ, (1− ε)σ∗ + εσ)

Evolutionarily stable strategy In the context above, σ∗ is said to be an evolutionarily stable strategy
(ESS) of the original finite symmetric game when for every strategy σ 6= σ∗ ∃ some ε̄ > 0 such that for
every ε < ε̄ we have

u(σ∗, (1− ε)σ∗ + εσ) > u(σ, (1− ε)σ∗ + εσ)

The point is that for an arbitrary invading strategy σ, an ESS “does strictly better” in the post-entry
population than σ does provided the fraction of invaders is small enough. The ESS concept is static rather
than dynamic. Maynard Smith didn’t account for how invaders might appear and/or get wiped out.

Basic Fact σ∗ is an ESS iff both of the following conditions hold:

• (σ∗, σ∗) is a Nash equilibrium of the original game - i.e. σ∗ is a best reply to itself.

• If σ is an alternative best reply to σ∗ in the original game, then

u(σ∗, σ) > u(σ, σ)

I.e. σ∗ does better against σ than σ does against itself.

The SPR game (as specified above) has no ESS. In general, while a finite symmetric game has at least one
Nash equilibrium (and in fact at least one symmetric Nash equilibrium of the form (σ∗, σ∗)), it need not
have an ESS.

Another consequence of the Basic Fact is that if (σ∗, σ∗) is a strict Nash equilibrium, then σ∗ is an ESS.
That’s because a strict Nash equilibrium has no alternative best replies, so we never need to check the second
condition in the Basic Fact.

21

ECE 4271

The pure strategies “play D” in the Prisoners’ Dilemma and “play C” and “play B” in the symmetric version
of the Battle of the Sexes/Brothers are all ESS. Three-stage IPD has no ESS.

Although the general three-stage IPD has no ESS, we can focus on four specific pure strategies for the game
and analyze the ESS outcomes. Four strategies are

• RP: play C on the first stage and continue playing C until your opponent plays D, after which play D
for the rest of the stages. (RP stands for relentless punishment.)

• RPD: play as in RP except always play D on the last stage.

• CD2: play C on the first stage and D on the last two under all circumstances.

• D3: play D on every stage under all circumstances.

There are many ways to mix and match the strategies but we will just focus on a few. First symmetric game
that arises is

RP D3

RP (9,9) (2,7)
D3 (7,2) (3,3)

Both (RP, RP) and (D3, D3) are strict Nash equilibria of this game and hence both RP and D3 are
evolutionarily stable strategies.

What makes any kind of equilibrium cooperation impossible in the three-stage IPD is the fact that a player’s
best move on the final stage is always to play D.

Next game looks like

RP RPD
RP (9,9) (6,11)

RPD (11,6) (7,7)

This has only one Nash equilibrium, namely (RPD,RPD), which is strict and RPD is therefore an ESS.

Next game looks like

RP RPD D3

RP (9,9) (6,11) (2,7)
RPD (11,6) (7,7) (2,7)
D3 (7,2) (7,2) (3,3)

(RPD, RPD) is still a Nash equilibrium but RPD is no longer an ESS. To see why, note that D3 is an
alternative best reply to RPD and 2 = u(RPD,D3) < u(D3, D3) = 3. (D3, D3 is a strict Nash equilibrium,
so D3 is an ESS.

Last we have

RP RPD CD2 D3

RP (9,9) (6,11) (4,9) (2,7)
RPD (11,6) (7,7) (4,9) (2,7)
CD2 (9,4) (9,4) (5,5) (2,7)
D3 (7,2) (7,2) (7,2) (3,3)

The only Nash equilibrium is (D3, D3), which is strict, making D3 an ESS. (Your fitness depends on who
else you are playing against).

22

ECE 4271

7 Replicator Dynamics

Replicator Dynamics are one of several examples of deterministic dynamical approaches to evolutionary game
theory (EGT). The approach entails modeling complicated inherently random processes with deterministic
nonlinear dynamical systems. The well developed machinery of dynamical-systems theory makes it possible
to analyze them rigorously, regardless of whether or not the resulting models are faithful or effective.

Setup Like above in ESS, the setup is a 2-player finite symmetric game. In such a game, each player has
the same finite action space A = {a1, a2, . . . , am}, and we can describe the payoffs using a single function
u : A × A → R as follows: the payoff to a player playing ai against an opponent playing aj is u(ai, aj).
If

σ = p1a1 + p2a2 + · · ·+ pmam

is a mixed strategy for either player, the expected payoff to the other player when he plays action ai against
σ is

u(ai, σ) = p1u(ai, a1) + p2u(ai, a2) + · · ·+ pmu(ai, am)

If that other player instead plays a mixed strategy

σ′ = q1a1 + q2a2 + · · ·+ qmam

against σ, he gets expected payoff

u(σ′, σ) =

m∑
i=1

m∑
j=1

qipju(ai, aj)

We’ll be considering large populations of agents that play the game with each other. Each agent is hard-
wired to play one of the actions in A every time it plays the game against another agent. The agents are
not rational. Can think of the agent populations as multi-sets of actions from A rather than as populations
of agents.

First step is to add the same positive constant to every payoff in the game being analyzed to arrive at a
game whose payoffs are strictly positive. This won’t change Nash equilibria. For the Hawk-Dove game, we
can transform the payoffs by adding 26 to each to get

H D
H (1,1) (76,26)
D (26,76) (41,41)

Assume (for now) the payoffs are integer-valued. The population at some integer time t ≥ 0, contains a large
number of agents each of which is programmed to play one of the actions in A. The population at time t+ 1
arises from the population at time t as follows:

(i) Each agent i in time t population plays the game with an opponent chosen at random from the time t
population.

(ii) The winning agent from (i) clones a number of copies of itself proportional (with some positive integer
proportionality constant K) to its payoff in the game from (i); these copies become members of the
next population. The proportionality constant K is the same for all agents.

(iii) After every agent in the current population has completed (i) and (ii), the agents in the current
population disappear and their clones from (ii) constitute the population at time t+ 1.

For each i, suppose the population at time t contains Ni(t) agents programmed to play action ai. Entire

population consists of N(t) =
∑n
i=1Ni(t) agents. For each i, let pi(t) = Ni(t)

N(t) be the fraction of agents in

the population playing ai.

23

ECE 4271

In step (i), every agent playing ai picks a random opponent to play the game with. The probability that
the chosen agent will be an aj-player is pj(t). The expected payoff to the ai-player is therefore

n∑
i=1

pj(t)u(ai, aj) = u(ai, p(t))

where p(t) is shorthand to represent the mixed strategy

p1(t)a1 + p2(t)a2 + · · ·+ pn(t)an

No one is actually playing this mixed strategy, some people call p(t) the population strategy at time t.

Delchamp’s standard form of the discrete-time replicator dynamics (using u(p(t), p(t)) to repre-
sent the payoff in a game to a player playing the population strategy p(t) against an opponent also playing
p(t)) is as follows

pi(t+ 1) =
u(ai, p(t))

u(p(t), p(t))
pi(t), 1 ≤ i ≤ n

Some comments on features of the equation

• Think of the discrete-time dynamical system governed by the equation as having the n-vector whose
ith entry is pi(t) as its state at time t. In other words, the equation describes a discrete-time dynamical
system whose state lives in Rn.

• If ai gains a higher-than-average payoff against the population strategy p(t), then pi(t+ 1) > pi(t) —
that is, the population at time t+1 contains a larger fraction of ai-players than the population at time
t. Similarly, if ai gains a lower-than-average payoff against p(t), the population at time t+ 1 contains
a smaller fraction of ai-players than the population at time t.

• If for some i we have pi(0) = 0 ,then we’ll have pi(t) = 0 for all t > 0. Thus if an action is absent from
the population at time 0, it never appears.

• If (σ∗, σ∗) is a Nash equilibrium of the original game, where

σ∗ = p∗1a1 + p∗2a2 + · · ·+ p∗nan

then the n-vector p∗ whose ith entry is p∗i is a fixed point of the discrete time dynamical system
governed by the equation. This is another way of saying that if the population strategy at time 0 is
σ∗, the population strategy at every time t > 0 is σ∗.

• The equation in general has fixed points other than the Nash equilibria of the original game. Any
monomorphic population — that is, any population composed solely of ai-players for some specific i
— has pi = 1 and pj = 0 for all other j. If you start with such a population at time 0, you’ll have such
a population for every time t > 0.

One form of continuous-time replicator dynamics where D denotes derivative with respect to
t,

Dpi(t) =
u(ai, p(t))− u(p(t), p(t))

u(p(t), p(t))
pi(t), 1 ≤ i ≤ n

Standard form of continuous-time replicator dynamics

Dpi(t) = (u(ai, p(t))− u(p(t), p(t)))pi(t), 1 ≤ i ≤ n

Both have the same fixed points and trajectories in p-space, they have the same phase portrait. But they do
lead to different time-parameterizations of trajectories of the phase portrait.

If you’re looking to analyze the continuous-time replicator dynamics for some game, you need not do any
positive-constant-adding beforehand.

24

