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This document contains notes from chapters and corresponding topics covered in Algorithm Design
in CS 4820 at Cornell.

Chapter 1: Introduction: Some Representative Problems

1.1 Stable matching problem

Given a set of preferences among employers and applicants, can we assign applicants to employers
s.t. for every employer E, and every applicant A who is not scheduled to work for E, at least one
of the following is the case

• E prefers every one of its accepted applicants to A

• A prefers her current situation over working for employer E

When this holds, the outcome is stable and individual self interest will prevent any applicant/employer
deal from being made behind the scenes. There are some complications that arise with this gen-
eral question, so we define it more clearly as follows. Set M = {m1, . . . ,mn} of n men, set
W = {w1, . . . , wn} of n women. M ×W denots the set of all possible ordered pairs of the form
(m,w), m ∈M , w ∈W .

Matching S is a set of ordered pairs, each from M ×W , with the property that each member of
M and each member of W appears in at most one pair in S.

Perfect matching S′ is a matching with the property that each member of M and each member
of W appears in exactly one pair in S′.

Above a perfect matching is a way to pair men with women, s.t. everyone ends up with a partner
and nobody is married to more than one person. Now to add the notion of preferences to the
setting. Each man m ∈M ranks all women. Say that m prefers w to w′ if m ranks w higher than
w′. The ordered ranking of m is his preference list. Ties are not allowed in the ranking. Define
analogously for each women.

Instability When a pair (m,w′) /∈ S but each m and w′ prefers each other over their partner in
S.

Stable matching Say a matching S is stable if it is perfect and has no instabilities.

Gale-Shapley Algorithm

while While there is a free man do
pick a man
man proposes to highest ranked woman he hasn’t already proposed to
if woman is free then

she tentatively accepts proposal
else

she compares her current tentatively accepted proposal to the man who is proposing and
tentatively accepts the man she prefers in her ranking

end if
end while
return all tentatively accepted proposals once there are no more unmatched men
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Fact The G-S algorithm terminates after at most n2 iterations of the while loop.

Fact Consider an execution of the G-S algorithm that returns a set S of pairs. That set S is a
stable matching.

Fact Let S∗ denote the set of pairs {(m, best(m)) : m ∈M}. Every execution of the G-S algorithm
results in the set S∗, i.e. as state above, the G-S algorithm favors males.

1.2 Five Representative Problems

Graph Think of graph G as a way to encode pairwise relationships among a set of objects. G
consists of a pair of sets, (V,E), V is a collection of nodes, E is a collection of edges, each
edge joins two of the nodes. Edge e ∈ E is a two-element subset of V : e = {u, v} for some
u, v ∈ V .

Five problems:

• interval scheduling - greedy algorithms

• weighted interval scheduling - dynamic programming

• bipartite matching - network flow problems

• independent set - NP-completeness

• competitive facility location - PSPACE-complete

Chapter 4: Greedy Algorithms

4.1 Interval scheduling, greedy stays ahead

General idea is to use a simple rule to select first possible request, delete incompatible requests,
repeat until you run out of requests.

The correct greedy rule is to select the request with the smallest finishing time.

Proofs with greedy stays ahead.

Algorithm can be made to run in O(n log n) time. O(n log n) to sort requests, O(n) to iterate
through them.

4.2 Scheduling to minimize lateness, exchange argument

Earliest deadline first sort jobs in increasing order of their deadlines and schedule them in this
order.

Use exchange argument to prove correctness.
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4.5 Minimum spanning tree problem

Say there is a set of locations V = {v1, . . . , vn}, you want to connect them all (path between
every node) as cheaply as possible (min number of paths). For certain pairs (vi, vj) you can build
a path connecting them at cost c(vi, vj) > 0. We represent the set of possible links as a graph
G = (V,E), with a positive cost ce corresponding to each edge e = (vi, vj) ∈ E. Problem is to find
a subset of edges T ⊆ E so that the graph (V, T ) is connected and total cost

∑
e∈T ce is as small

as possible.

Fact Let T be a minimum cost solution to problem posed above, (V, T ) is a tree.

We call the subset T ⊆ G a spanning tree of G if (V, T ) is a tree. Thus the problem posed above
can be rephrased as a problem of finding a minimum spanning tree.

Kruskal’s Start with no edges, build a spanning tree by successively inserting edges from E in
order of increasing cost. Insert edge e as long as it does not create a cycle.

Fact Kruskal’s can be implemented on a graph with n nodes and m edges to run in O(m log n)
time.

Prim’s Start with root node s and greedily build spanning tree from that. At each step, add node
to spanning tree that minimizes attachment cost (mine=(u,v):u∈S) and include edge (u, v) that
achieves this minimum in the minimum spanning tree.

Fact Using priority queue, you can implement Prim’s to run on graph with n nodes and m edges
to run in O(m) time.

Reverse delete Backward version of Kruskal. Start with full graph G = (V,E) and delete edges
in order of decreasing cost. Delete edge as long as the deletion does not disconnect the current
graph.

Borukva ?

Chapter 5: Divide and Conquer

Divide and Conquer is a class of algorithmic techniques in which you break the input into
smaller parts and solve the problem on each part recursively, then combine the solutions to
the subproblems to generate the solution to the overall problem.

Template Divide input into two pieces of equal size, solve subproblems on these pieces separately
by recursion, combine results into overall solution, spend only linear time for division and
recombining.

Recurrence relation For any divide and conquer that generally fits the template, let T (n) denote
the worse case running time on input of size n, supposing that n is even, the algo spends
O(n) time to divide the input into pieces of size n/2 and then spends time T (n/2) to solve
each one, and finally spends O(n) time to combine the solutions of each one. This gives rise
to the following recurrence relation (for some constant c)

T (n) ≤ 2T (n/2) + cn (1)
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when n > 2 and T (2) ≤ c. You could also write without c as

T (n) ≤ 2T (n/2) +O(n)

but its better to make c explicit.

To solve a recurrence:

• “unroll” the recursion. i.e. accout for the running time for first few levels, identify pattern
for recurrence expanding, sum running times over all levels of recursion and arrive at total
running time.

• Start with guess for solution, substitute into recurrence relation, check that it works. Justify
the “plugging” in argument via induction on n.

Fact Any function T (·) satisfying (1) is bounded by O(n log n), when n > 1.

5.5 Integer multiplication

Problem is the multiplication of two integers (also assume we are multiplying in base 2, but it
doesn’t matter overall). The traditional way to do this takes O(n2).

function Recursive-multiply(x, y)
x = x1 ∗ 2n/2 + x0
y = y1 ∗ 2n/2 + y0
Compute x1 + x0 and y1 + y0
p = RECURSIVE-MULTIPLY(x1 + x0,y1 + y0)
x1y1 = RECURSIVE-MULTIPLY(x1,y1)
x0y0 = RECURSIVE-MULTIPLY(x0,y0)
return x1y1 · 2n + (p− x1y1 − x0y0) · 2n/2 + x0y0

end function

Fact The running time of Recursive-multiply on two n-bit factors is O(nlog2 3) = O(n1.59)

Linear-space sequence allignment

Same sequence alignment question that is outlined in DP section, but we want to do better than
O(mn) space. We will develop algo to complete get the matching in O(mn) time (same as before)
but in O(m+ n) space.

Idea is to only store recent values needed to calculate next step of recurrence. Problem is that if you
only do this, you achieve O(m) space but you can’t implement a “find-solution” type of algorithm
to backtrack and return the alignment once the algorithm completes.

We accomplish the solution with a backward formulation of the dynamic program

Backward recurrence For i < m and j < n we have

g(i, j) = min(αxi+1,yj+1 + g(i+ 1, j + 1), δ + g(i, j + 1), δ + g(i+ 1, j))

You then use divide and conquer and both the forward (described in DP section) and backward
recurrences (on each half of substrings) to find the optimal alignment, maintain a global list P that
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holds nodes on the “corner to corner” path, P will have at most m+n entries, thus O(m+n) space
complexity.

Space-efficient strong matching

todo

Chapter 6: Dynamic Programming

General DP outline

To develop DP algorithm for a problem, need to have subproblems derived from original problem
with the following conditions

• only polynomial number of subproblems

• solution to original problem can easily be computed from solution to subproblems, original
problem may actually be a subproblem/could be considered a subproblem

• ∃ a natural ordering of subproblems with an easy to compute recurrence, that allows you to
compute solution to subproblem from the solutions to some number of smaller subproblems

Its never clear that a collection of subproblems will be useful until one finds the recurrence, but its
hard to find a recurrence without any subproblems.

Essential components of solution (check this over)

• basecase

• recurrence

• final output, how to arrive there

6.1 Weighted interval scheduling

This is the more general case of interval scheduling problem, each interval now comes with a
certain value (or weight), want to accept a set of intervals of maximum value. To refresh, we have
n requests labeled 1, . . . , n, with each request i specifying start time si, finish time fi, and value
vi. Intervals are compatible if they do not overlap. Goal is to select a subset S ⊆ {1, . . . , n}
of mutually compatible intervals, as to maximize the sum of values of selected intervals

∑
i∈S vi.

Suppose requests are sorted in order of nondecreasing finish time: f1 ≤ f2 ≤ · · · ≤ fn. Define p(j)
for an interval j, to be the largest index i < j (i before j) s.t. intervals i and j are disjoint. i is
the leftmost interval that ends before j begins. p(j) = 0 if no i satisfies.

For any value j say opt(j) is the optimal solution of the problem consisting of requests {1, . . . , j}

Recurrence relation is
opt(j) = max

(
vj + opt(p(j)), opt(j − 1)

)
This will correctly compute opt(j) for j = 1, . . . , n.
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Problem: As is, this runs in exponential time. Solution: Memoize the results to make it run
faster.

Memoization Store previous opt() computations in a data structure (typically an array) to use
in future computations of opt().

Fact Running time of memoized version (assuming input intervals are sorted by finishing times)
is O(n).

Compute solution w/ value you can “work backwards” to find the solution along with the
optimal value (find the specific intervals to schedule), can be done in O(n) time.

To get solution by working backwards:

function find-Solution(j)
if j = 0 then

return null
else if vj +M [p(j)] ≥M [j − 1] then

return j together with the result of FIND-SOLUTION(p(j))
else

return the result of FIND-SOLUTION(j − 1)
end if

end function

6.3 Segmented least squares

This problem involves multi-way choices in the recurrence (not just binary). The fundamental issue
is change detection, identifying points in a sequence at which discrete change occurs.

Given a set of points P = {(x1, y1), . . . , (xn, yn)} with x1 < x2 < · · · < xn. Use pi to denote point
(xi, yi). Must partition P into some number of segments. Each segment is a subset of P that
represents a contiguous set of x coordinates, i.e. a subset of the form {pi, pi+1, . . . , pj−1, pj} for
indices i ≤ j. Then for each segment S in partition of P , compute the line minimizing error wrt
points in S, according to formulas in text. Penalty of partition is a sum of following terms:

• number of segments into which we partition P , times a fixed, given multiplier C > 0

• for each segment, the error value of the optimal line through that segment

Let opt(i) denote the optimum solution for the points p1, . . . , pi and let ei,j denote the minimum
error of any line with respect to pi, pi+1, . . . , pj . We know then that

Fact If the last segment of the optimal partition is pi, . . . , pn then the value of the optimal solution
is opt(n) = ei,n + C + opt(i− 1)

Recurrence For the subproblem on the points p1, . . . , pj

opt(j) = min1≤i≤j(ei,j + C + opt(i− 1))

and the segment pi, . . . , pj is used in an optimum solution for the subproblem iff the minimum
is obtained using index i.

This algorithm runs in O(n2) time.
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6.6 Sequence alignment (a.k.a. edit distance)

Suppose we are given two strings X and Y , where each is a sequence of symbols X = x1, x2, . . . , xm
and Y = y1, y2, . . . , yn. Consider the sets {1, 2, . . . ,m} and {1, 2, . . . , n} representing positions in
X and Y , a matching is a set of ordered pairs with property that each item occurs in at most one
pair. Say the matching M is an alignment if there are no crossing pairs. Want to find the optimal
alignment between X ane Y . According to following criteria

• Parameter δ > 0 defines gap penalty. For each position of X and Y that is not matched in
M (each gap), incur a cost of δ.

• For each pair of letters p, q, there is a mismatch cost of αp,q for lining up p with q.

• The cost of M is the sum of the gap and mismatch costs, we seek an alignment of min cost.

Recurrence Let opt(i, j) denote the minimum cost of an alignment between x1x2 · · ·xi and y1y2 · · · yj .
The minimum alignment costs satisfy the following recurrence for i ≥ 1 and j ≥ 1:

opt(i, j) = min(αxi,yj + opt(i− 1, j − 1), δ + opt(i− 1, j), δ + opt(i, j − 1))

(i, j) is an optimal alignment M for this subproblem iff the minimum is achieved by the first
of these values.

Output opt(m,n) is the value we are seeking in the problem.

Running time O(mn), because the array has O(mn) entries and at worst we spend constant time
on each.

Knapsack problem

Starting with subset sum problem...

Given n items {1, . . . , n}, and each has a given non-negative weigth wi (for i = 1, . . . , n). Also
given bound W . Would like to select subset S of items so that

∑
i∈S wi ≤ W and subject to this

restriction,
∑

i∈S wi is maximized. This is the subset sum problem.

Denote the optimal solution using subset of items {1, . . . , i} with maximum allowed weight w as
opt(i, w)

opt(i, w) = maxs

Recurrence If w < wi then opt(i, w) = opt(i− 1, w), else

opt(i, w) = max(opt(i− 1, w), wi + opt(i− 1, w − wi))

Fact This algorithm correctly computes the optimal value and runs in O(nW ) time.

Fact Given a table M of optimal values of subproblems, the optimal set S can be found in O(n)
time.

The subset sum problem above is a special case of the more general Knapsack problem, where
each request i has both a value vi and a weight wi. The goal is to now select a subset S of
maximum total value

∑
i∈S vi, subject to the restriction that its total weight does not exceed W :∑

i∈S wi ≤W .
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Recurrence If w < wi then opt(i, w) = opt(i− 1, w), else

opt(i, w) = max(opt(i− 1, w), vi + opt(i− 1, w − wi))

Fact The knapsack problem can be solved in O(nW ) time.

Bellman-Ford shortest path algorithm

Let G = (V,E) be a directed graph. Assume that each edge (i, j) ∈ E has weight cij . We will try
to use dynamic programming to solve the problem of finding a shortest path from s to t when there
are negative cost edges, but no negative cycles.

Fact If G has no negative cycles, then ∃ a shortest path from s to t that is simple (i.e. does not
repeat nodes), and hence has at most n− 1 edges.

Say opt(i, v) is the minimum cost of a v − t path using at most i edges.

Recurrence If i > 0 then

opt(i, v) = min(opt(i− 1, v),min
w∈V

opt(i− 1, w) + cvw)

Fact This algo correctly computes minimum cost of an s−t path in any graph that has no negative
cycles and runs in O(n3) time.

Fact Algo can be implemented in O(mn) time.

Chapter 7: Network Flow

7.1 Max Flow and Ford Fulkerson

Flow networks a directed graph G = (V,E) with the following features

• each edge e ∈ E has non-negative capacity ce

• single source node s ∈ V

• single sink node t ∈ V

• nodes other than s and t are internal nodes

No edge enters the source s and no edge leaves the sink t. Also there is at least one edge
incident to each internal node and all capacities are integer valued.

Flow this is an abstract representation of the traffic being carried by the network. Say that an
s − t flow is a function f that maps edge e to a non-negative real number, f : E → R+, the
value f(e) represents the amount of flow being carried by edge e and f must satisfy

• (capacity condition) ∀ e ∈ E, 0 ≤ f(e) ≤ ce

• (conservation condition) ∀ v ∈ V : v 6= s, t,∑
e into V

f(e) =
∑

e out of V

f(e)
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Value of flow f the amount of flow generated at the source

v(f) =
∑

e out of S

f(e)

fout(v) =
∑

e out of v

f(e)

f in(v) =
∑

e into v

f(e)

For a set of vertices S ⊆ V
fout(S) =

∑
e out of S

f(e)

f in(S) =
∑

e into S

f(e)

Max flow problem Given a flow network, find a flow of maximum possible value. Max flow is
related to min cut (max flow value is same as minimum capacity along min cut division).

Residual graph Given flow network G and flow f on G, define Gf to be the residual graph of G
wrt f as follows

• node set Gf is same as G

• ∀ edges e = (u, v) of G on which f(e) < ce, add edge e = (u, v) to Gf with capacity
c − f(e) (left over units of flow that can be pushed forward), these edges added are
forwards edges

• ∀ edges e = (u, v) of G on which f(e) > 0, add edge e′ = (v, u) to Gf with capacity f(e)
(flow we can undo and push backwards), these edges added are called backwards edges

Augmenting paths Say P is a simple s−t path in Gf , P does not visit any node more than once.
Define bottleneck(P, f) to be the minimum residual capacity of any edge on P wrt flow f .
Say an augmenting path is any s− t path in residual graph. Follow this to make augmenting
path

function augment(f,P)
let b = bottleneck(P, f)
for edge (u, v) ∈ P do

if e = (u, v) is a forward edge then
increase f(e) in G by b

else
((u, v) is a backward edge, say e = (v, u)), decrease f(e) in G by b

end if
end for
return f

end function

There will be a new flow as a result of the function.

Ford Fulkerson Algorith to compute s− t flow in G

function max-flow
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Initialize f(e) = 0 ∀ e ∈ G
while there is an s− t path in residual graph Gf do

let P be a simple s− t path in Gf

f ′ = augment(f,P)

update f to be f ′

update the residual graph Gf to be Gf ′

end while
return f

end function

Fact At every intermediate stage of Ford Fulkerson, the flow values f(e) and the residual capacities
in Gf are integers

Fact Suppose that all capacities in the flow network G are integers. Then the Ford Fulkerson
algorithm terminates in at most C iterations of the while loop, where C =

∑
e out of s ce.

Fact Suppose that all capacities in the flow network G are integers and m is number of edges.
Then the Ford Fulkerson algorithm can be implemented in O(mC) time.

7.2 Max flows and min cuts in a network

Fact Let f be any s− t flow, and (A,B) any s− t cut. Then v(f) = fout(A)− f in(A).

Fact Let f be any s− t flow, and (A,B) any s− t cut. Then v(f) = f in(B)− fout(B).

Fact Let f be any s − t flow, and (A,B) any s − t cut. Then v(f) ≤ c(A,B), i.e. the value of
every flow is upper-bounded by the capacity of every cut.

Fact If f is an s− t flow s.t. there is no s− t path in the residual graph Gf , then there is an s− t
cut (A∗, B∗) in G for which v(f) = c(A∗, B∗). Consequently, f has the maximum value of
any flow in G, and (A∗, B∗) has the minimum capacity of any s− t cut in G.

Fact The flow f̄ returned by Ford Fulkerson is a maximum flow.

Fact Given a flow f of maximum value, can compute an s − t cut of minimum capacity in O(m)
time.

Fact In every flow network, ∃ a flow f and cut (A,B) s.t. v(f) = c(A,B).

Fact In every flow network, the maximum value of an s− t flow is equal to the minimum capacity
of an s− t cut.

Fact If all capacities in the flow network are integers, then ∃ a maximum flow f for which every
flow value f(e) is an integer.

Note Note that if you allow real-valued capacities in the flow network, then it is possible for the
Ford Fulkerson algo to never terminate.

7.5 First application: Bipartite matching problem

Recall a bipartite graph G = (V,E) is undirected graph whose node set can be partitioned as
V = X ∪ Y s.t. every edge e ∈ E has one end in X and the other end in Y . A matching M in G is
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a subset of the edges M ⊆ E s.t. each node appears in at most one edge in M . Bipartite matching
problem wants to find a matching M in G of the largest possible size.

To make a flow network G′ from G, make all edges from X to Y directed, then add node s and add
edge (s, x) ∀ x ∈ X, then add node t and add edge (y, t) ∀ y ∈ Y , give each edge a capacity of 1.
From the textbook:

Figure 1: How to create flow network from bipartite graph

Compute maximum flow on this network, value of the max flow is equal to the size of the maximum
matching in G, and we can use the max flow to recover the max matching.

Fact The size of max matching in G is equal to the value of the maximum flow in G′; and the
edges in such a matching in G are the edges that carry flow from X to Y in G′.

Fact Ford Fulkerson algorithm can be used to find a maximum matching in a bipartite graph in
O(mn) time, m = number of edges in bipartite graph, n = |X| = |Y |.

Define Γ(A) to be the set of all nodes that are adjacent to nodes in A.

Fact If a bipartite graph G = (V,E) with two sides X and Y has a perfect matching, then ∀
A ⊆ X we must have |Γ(A)| ≥ |A|.

Fact Assume that the bipartite graph G = (V,E) has two sides X and Y s.t. |X| = |Y |. Then
graph G either has a perfect matching or ∃ a subset A ⊆ X s.t. |Γ(A)| ≥ |A|. A perfect
matching or an appropriate subset A can be found in O(mn) time.

7.7 Extensions to max flow problem

Its really useful that we are able to reduce problems with a non-trivial combinatorial search com-
ponent to a problem involving find a maximum flow (or minimum cut) in a directed graph, as this
gives us the ability to solve in polynomial time.

Circulations with demands

We now have a set S of sources and a set T of sinks, each s ∈ S generates supply −dv and each
t ∈ T has demand dv. We want to ship flow from s’s to t’s to satisfy the supplies and demands
of the sources and sinks. Say that a circulation with demands {dv} is a function f that assigns a
non-negative real number to each edge and satisfies

• (Capacity conditions) ∀ e ∈ E, 0 ≤ f(e) ≤ ce

• (Demand conditions) ∀ v ∈ V , f in(v)− fout(v) = dv

11



Eric Johnson edj36 CS 4820 Chapter Summaries

Fact If ∃ a feasible circulation with demands dv then
∑

v dv = 0

Reduction to max flow add a super source s∗ and super sink t∗. For each u ∈ S add edge (s∗, u)
with capacity −du. For each v ∈ T add edge (v, t∗) with capacity dv.

Fact There is a feasible circulation with demands {dv} in G iff the maximum s∗ − t∗ in G′ has
value D. If all capacities and demands in G are integers and there is a feasible circulation,
then there is a feasible circulation that is integer valued.

D =
∑

v:dv>0

dv =
∑

v:dv<0

−dv

Circulations with demands and lower bounds

Similar to above but we also want to force the flow to make use of certain edges. We do this with
lower bounds (le on each edge e in flow network). Flow network G = (V,E), 0 ≤ le ≤ ce for each
e ∈ E, and also each v ∈ V has demand dv. Circulation in this new network now must satisfy

• (Capacity conditions) ∀ e ∈ E, le ≤ f(e) ≤ ce

• (Demand conditions) ∀ v ∈ V , f in(v)− fout(v) = dv

We want to know if ∃ a feasible circulation. We will reduce this problem to the problem above
where we have no lower bounds on capacity (which then gets reduced again). To construct our
reduction lets start defining initial circulation f0 via f0(e) = le ∀e and by defining Lv via

Lv = f in0 (v)− fout0 (v) =
∑

e into v

le −
∑

e out of v

le

Now make G′ similarly to our previous reduction but capacity of each edge is now ce − le and
demand for each node is dv − Lv. This is now equivalent to the instance above with demands but
no lower bounds, and we can use the algorithm from that to solve it.

Fact There is a feasible circulation in G iff there is a feasible circulation in G′. If all demands,
capacities, and lower bounds in G are integers and ∃ a feasible circulation, then ∃ a feasible
circulation that is integer valued.

7.10 Image Segmentation

Segmenting an image into various coherent regions. We want to label each pixel as belonging
to either the foreground or background. Let V be the set of pixels and E be set of all pairs of
neighboring pixels. This gives undirected graph G = (V,E). Each pixel i has a likelihood ai that
it is in the foreground and bi that it is in the backgroud. For each pair of pixels (i, j) there is
a separation penalty pij for placing one in one ground and the other in the other. Segmentation
problem is then to find a partition of the set of pixels into A (foreground) and B (background) to
maximize

q(A,B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E,|A∩(i,j)|=1

pij

which is the same as minimizing

q′(A,B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E,|A∩(i,j)|=1

pij
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To make a flow networkG′ = (V ′, E′) we first add a super source and super sink, s and t respectively.
The node set consists of V from before combined with the new s and t nodes. For each neighboring
pair i and j of nodes, we add two edges (i, j) and (j, i), each with capacity pij . For each pixel i we
add edge (s, i) with capacity ai and edge (i, t) with capacity bi. An s− t cut (A,B) corresponds to
partition of pixels into sets A and B. We can now solve the min cut problem (as we know how to
do) and we have an optimal model of foreground/background segmentation.

Fact The solution to the Segmentation Problem can be obtained by a minimum-cut algorithm on
G′ constructed above. For a minimum cut (A′, B′), the partition (A,B) obtained by deleting
s∗ and t∗ maximizes the segmentation value of q(A,B).

Chapter 8: NP and Computational Intractability

8.1 Polynomial time reductions

Reduction a particular problem X is at least as hard has problem Y when if we have a black
box capable of solving X, then we can also use that to solve Y . Can arbitrary instances of
Y be solved using a polynomial number of standard computational steps plus a polynomial
number of calls to a black box that solves problem X? If yes, then Y ≤P X.

Fact Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be solved in polynomial
time.

Fact Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X cannot be solved in
polynomial time.

Independent Set Given G = (V,E), set of nodes S ⊆ V are independent if no two nodes in S
are joined by an edge. Also given k, question is whether G contains an independent set of
size at least k.

Vertex Cover Given G = (V,E), say a set of nodes S ⊆ V is a vertex cover if every edge e ∈ E
has at least one end in S. Vertices do the covering, edges get covered. Also given k, question
is does G contain a vertex cover of size at most k.

Fact Let G = (V,E) be a graph. Then S is an independent set iff its complement V −S is a vertex
cover.

Fact Independent Set (IS) ≤P Vertex Cover (VC)

Fact Vertex Cover (VC) ≤P Independent Set (IS)

Set Cover Given a set U of n elements, a collection S1, . . . , Sm of subsets of U , and a number k,
does there exist a collection of at most k of these sets whose union is equal to all of U .

Fact Vertex Cover (VC) ≤P Set Cover (SC)

Set Packing Given a set U of n elements, a collection S1, . . . , Sm of U , and a number k, does there
exist a collection of at least k of these sets with the property that no two of them intersect.

Fact Independent Set (IS) ≤P Set Packing (SP)

13
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8.2 Reductions via gadgets: Satisfiability problem

SAT and 3-SAT problems

Suppose we are given a set X of n booleans x1, . . . , xn; each take either 0 or 1. By a term in X, we
mean one of the variables xi or its negation x̄i. A clause is a disjunction of distinct terms

t1 ∨ t2 ∨ · · · ∨ tl

With each ti ∈ {x1, x2, . . . , xn, x̄1, . . . , x̄n}

A truth assignment for X is an assignment of the value 0 or 1 to each xi, i.e. a function v : X →
{0, 1}. Assignment v implicitly gives x̄i the opposite truth value from xi. An assignment satisfies
a clause C if it causes C to evaluate to 1 under boolean logic, i.e. at least one term in C is set to
1. An assignment satisfies a collection of clauses C1, . . . , Ck if it causes all of the Ci to evaluate to
1; i.e. it causes the conjunction

C1 ∧ C2 ∧ · · · ∧ Ck

to evaluate to 1. When this happens, we say v is a satisfying agreement wrt C1, . . . , Ck and the set
of clauses C1, . . . , Ck is satisfiable.

Satisfiability SAT problem Given a set of clauses C1, . . . , Ck over a set of variables X =
{x1, . . . , xn}, does there exist a satisfying truth assignment?

3-SAT Given a set of clauses C1, . . . , Ck, each of length 3, over a set of variables X = {x1, . . . , xn},
does there exist a satisfying truth assignment?

SAT and 3-SAT are fundamental combinatorial search problems.

Fact 3-SAT ≤P Independent Set

Fact If Z ≤P Y and Y ≤P X, then Z ≤P X (reductions are transitive).

8.3 Efficient certification and definition of NP

P is set of all problems X for which ∃ algorithm A with polynomial run time that solves X.

Efficient certifier B is efficient certifier for problem X if

• B is polynomial time algorithm that takes two input arguments s and t, s is the guess
of correct solution, t that is the “certificate” string, gives a way to check s is correct.

• ∃ polynomial function p s.t. for every string s, we have s ∈ X iff ∃ string t s.t. |t| ≤ p(|s|)
and B(s, t) = yes.

Efficient certifier can be used as the core of a brute force algorithm. Try all strings and keep
checking with the certifier.

NP is the set of problems for which ∃ an efficient certifier.

Fact P ⊆ NP

Million dollar question Is there a problem in NP that does not belong to P? Does P = NP?

14



Eric Johnson edj36 CS 4820 Chapter Summaries

8.4 NP-Complete problems

NP-Complete A natural way to define the hardest problem. Such a problem X should have the
following two properties

• X ∈ NP

• ∀ Y ∈ NP, Y ≤P X. I.e. every problem in NP can be reduced to X.

Fact Suppose X is an NP-Complete problem. Then X is solvable in polynomial time iff P = NP.
If there is any NP-complete problem that cannot be solved in polynomial time, then no
NP-complete problem can be solved in polynomial time.

Fact Circuit Satisfiability is NP-complete.

Fact If Y is an NP-complete problem, and X is a problem in NP with the property that Y ≤P X,
then X is NP-complete.

Fact 3-SAT is NP-complete.

Fact Independent set, set packing, vertex cover, and set cover are all NP-complete.

General Strategy to Prove New Problem is NP-Complete

Given a new problem X general strategy to show it is NP-complete:

1. Prove X ∈ NP

2. Choose problem Y that is known to be NP-complete

3. Prove Y ≤P X i.e. consider an arbitrary instance sY of problem Y , and show how to
construct, in polynomial time, an instance of sX of problem X that satisfies

• If sY is a yes instance of Y , then sX is a yes instance of X

• If sX is a yes instance of X, then sY is a yes instance of Y (or contrapositve: if sY is a
no instance of Y , then sX is a no instance of X)

In other words this establishes that sX and sY have the same answer.

8.5 Sequencing problems

Type of computationally hard problem involving searching over the set of all permutations of a
collection of objects.

Traveling Salesman Problem Given a set of distance on n cities and a bound D, is there a tour
of length at most D? (Must visit all n cities and return to home city).

Hamiltonian Cycle Problem Given a directed graph G = (V,E), say that a cycle C in G is
a Hamiltonian cycle if it visits each vertex exactly once. Given a directed graph G, does it
contain a Hamiltonian cycle?

Fact Hamiltonian cycle is NP-complete.

Fact Traveling Salesman is NP-complete.
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Hamiltonian Path Problem Given a directed graph G = (V,E), say a path P in G is a Hamil-
tonian path if it contains each vertex exactly once. (Path can start and end at any node).
Given a direct graph G, does it contain a Hamiltonian path?

Fact Hamiltonian path is NP-complete.

8.6 Partioning Problems

3-Dimensional Matching Problem

Given disjoint sets X, Y , and Z, each of size n, and given a set T ⊆ X × Y ×Z of ordered triples,
does ∃ a set of n triples in T s.t. each element of X ∪ Y ∪ Z is contained in exactly one of these
triples.

Easy to show 3-D matching ≤P Set Cover and 3-D matching ≤P Set Packing but hard to show the
other way (hard to use this to show NP-complete).

Fact 3-D Matching is NP-complete, use 3-SAT for reduction.

8.8 Numerical Problems

Subset Sum Problem

This is a special case of the Knapsack problem. Given natural numbers w1, . . . , wn, and a target
number W , is there a subset of {w1, . . . , wn} that adds up to precisely W?

We have seen an algorithm that can solve this problem already, the algorithm was psuedo-polynomial,
i.e. it runs in time polynomial in the magnitude of input numbers, but not polynomial in the size
of their respresentation.

Fact Subset sum is NP-complete, use 3-D matching for reduction.

Fact Scheduling with Release Times and Deadlines is NP-complete, use Subset sum for reduction.

Caveat: Subset sum with polynomially bounded numbers Consider special case of subset
sum, with n input numbers, in which W is bounded by a polynomial function of n. Assuming
P 6= NP, this special case is not NP-complete.

Component Grouping Given a graph that is not connected, and a number k, does there exist
a subset of its connected components whose union has size exactly k? It is incorrect to
claim that Component Grouping is NP-complete. You cannot establish that Subset sum ≤P

Component Grouping, because it takes more than polynomial time to reduce.

8.9 Co-NP and the Asymmetry of NP

The definition of efficient certification is fundamentally asymmetric. Relating to intuition about
NP, when we have a “yes” its a relatively short proof, but when we have a “no”, no corresponding
short proof is guaranteed by definition. Answer is simply no because we can’t find a string that
will serve as a proof.
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For every problem X, there is a natural complementary X̄: For all input strings s, we say s ∈ X̄
iff s /∈ X. Note if X ∈ P , X̄ ∈ P , because if we have algo A that solves X, we can simply produce
Ā that runs A and flips the answer. This doesn’t make it clear that if X ∈ NP , then X̄ /∈ NP .
This is because its hard to show that the ∃ in the definition of ∈ NP transfers to become ∀ in the
definition of /∈ NP .

Co-NP Class of problems parallel to NP. A problem X belongs to Co-NP iff the complementary
problem X̄ belongs to NP.

Does NP = Co−NP ?

Widespread belief is that NP 6= Co−NP . Proving NP 6= Co−NP would be an even bigger
step than proving P 6= NP because:

Theorem If NP 6= Co-NP, then P 6= NP.

Good Characterizations: The Class NP ∩ Co-NP

If problem X belongs to both NP and Co-NP, when the answer is yes, there is a short proof of
correctness, when the answer is no, there is also a short proof of correctness.

Good Characterization Problems that belong to the intersection NP ∩ Co-NP are said to have
good characterization, there is always a nice certificate for the solution. The following have
good characterization:

• Whether or not network flow contains flow of value at least v

• Bipartite perfect matching problem

If a problem in P, then it belongs to both NP and Co-NP, thus P ⊆ NP ∩ Co-NP. Open ques-
tion:

Does P = NP ∩ Co−NP ?

General opinions are very mixed on this problem.

8.10 Partial Taxonomy of Hard Problems

Packing Problems

You’re given a collection of objects, and you want to choose at least k of them; making your
life difficult is a set of conflicts among the objects, preventing you from choosing certain groups
simultaneously.

Independent Set Given a graph G and a number k, does G contain an independent set of size
at least k.

Set Packing Given a set U of n elements, a collection S1, . . . , Sm of subsets of U , and a number
k, does there exist a collection of at least k of these sets with the property that no two of
them intersect?

Covering Problems

You’re given a collection of objects, and you want to choose a subset that collectively achieves a
certain goal; the challenge is to achieve this goal while choosing only k of the objects.

Vertex Cover Given a graph G and a number k, does G contain a vertex cover of size at most k?
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Set Cover Given a set U of n elements, a collection S1, . . . , Sm of subsets of U , and a number k,
does there exist a collection of at most k of these sets whose union is equal to all of U?

Partitioning Problems

Partitioning problems involve a search over all ways to divide up a collection of objects into subsets
so that each object appears in exactly one of the subsets.

3-Dimensional Matching Given disjoint sets X, Y , and Z, each of size n, and given a set
T ⊆ X×Y ×Z of ordered triples, does there exist a set of n triples in T so that each element
of X ∪ Y ∪ Z is contained in exactly one of these triples?

Graph Coloring Given a graph G and a bound k, does G have a k-coloring?

Sequencing Problems

Searching over the set of all permutations of a collection of objects.

Hamiltonian Cycle Given a directed graph G, does it contain a Hamiltonian cycle?

Hamiltonian Path Given a directed graph G, does it contain a Hamiltonian path?

Traveling Salesman Given a set of distances on n cities, and a bound D, is there a tour of length
at most D? (must hit all cities).

Numerical Problems

Subset Sum Given natural numbers w1, . . . , wn, and a target number W , is there a subset of
{w1, . . . , wn} that adds up to precisely W?

Constraint Satisfaction Problems

3-SAT Given a set of clauses C1, . . . , Ck, each of length 3, over a set of variables X = {x1, . . . , xn},
does there exist a satisfying truth assignment? (allegedly most useful for reductins, SAT is
also good).

Chapter 11: Approximation Algorithms

How to design algorithms for problems where polynomial time is probably unattainable? Approx-
imation algorithms run in polynomial time and find solutions that are guaranteed to be close to
the optimal solution. In order to prove our approximation is guaranteed to be close to optimal,
we need to compare it to the optimal solution - which is very hard to find, making these kinds of
problems inherently tricky.

Four general techniques

• greedy algorithms

• pricing method (aka primal-dual technique)

• linear programming, integer programming

• dynamic programming on rounded version of input
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11.2 The Center Selection Problem

Given an integer k, a set S of n sites (towns), and a distance function that satisfies the following
natural properties

• dist(s, s) = 0 ∀ s ∈ S

• distance is symmetric: dist(s, z) = dist(z, s) ∀z, s ∈ S

• triangle inequality: dist(s, z) + dist(z, h) ≥ dist(s, h)

Let C be a set of centers. Assume that people in a given town will shop at the closest mall. Define
the distance from a site s to the centers as dist(s, C) = minc∈C dist(s, c). Say that the set of centers
C forms an r cover if each site is within distance at most r from the centers (dist(s, C) ≤ r for all
sites s ∈ S). The minimum r for which C can r-cover will be called the covering radius of C and is
denoted r(C) (farthest anyone needs to travel to get to his or her nearest center). Goal is to select
a set C of k centers for which r(C) is as small as possible.

Simple greedy algorithm Put the first center at the best possible location for a single center,
then keep adding centers so as to reduce the covering radius each time by as much as possible.

This is too simple to be effective. Consider only two sites and k = 2, greedy selects halfway
between first, but the optimal is to put a center on top of each site.

Better greedy algorithm that relies on knowing optimal ahead of time

S′ is set of sites that still need to be covered
Initialize S′ = S
Let C = ∅
while S′ 6= ∅ do

Select any site s ∈ S′ and add s to C
Delete all sites from S′ that are at distance at most 2r from s

end while
if |C| ≤ k then

return C as the selected set of sites
else

Claim (correctly) that there is no set of k centers with covering radius r
end if

Fact Any set of centers C returned by the algorithm has covering r(C) ≤ 2r

Fact Suppose the algorithm selects more than k centers. Then, for any set C∗ of size at most k,
the covering radius is r(C∗) > r

Problem is that algorithm above relies on knowing optimal radius r.

Eliminating the assumption of knowing optimal radius Iteratively maintain two r values,
r0 < r1, s.t. optimal radius is always > r0 but less than 2r1. Run algorithm above with radius
r = (r0 + r1)/2.

Greedy algorithm that works Select site s that is farthest away from all previously selected
centers. If there is any site at least 2r away from previously chosen centers, then this farthest site
s must be one of them.

Assume k ≤ |S|
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Select any site s and let C = {s}
Let C = ∅
while |C| < k do

Select any site s ∈ S that maximizes dist(s, C)
Add site s to C

end while
return C as the selected set of sites

Fact This greedy algorithm returns a set C of k points s.t. r(C) ≤ 2r(C∗), where C∗ is an optimal
set of points

This is a 2-approximation.

11.6 Linear Programming and Rounding: An Application to Vertex Cover

Linear Programming as a General Technique

Consider the problem of determining a vector x that satisifies Ax ≥ b. Given a region defined by
Ax ≥ b linear programming seeks to minimize a linear combination of the coordinates of x over all
x belonging to the region. Such a linear combination can be written as ctx, where c is a vector of
coefficients, ctx denotes inner product of the two vectors.

Standard form for linear programming optimization problem is as follows:

Given an m × n matrix A, and vectors b ∈ Rm and c ∈ Rn, find a vector x ∈ Rn to
solve the following optimization problem

min(ctx s.t. x ≥ 0; Ax ≥ b)

ctx is often called the objective function and Ax ≥ b is the set of constraints.

Can phrase linear programming as a decision problem via

Given a matrix A, vectors b and c, and a bound γ, does ∃ x s.t. x ≥ 0, Ax ≥ b, and
ctx ≤ γ.

Computational complexity of linear programming

The decision version of linear programming is in NP and also in Co-NP, this follows from linear
programming duality. Most widely used algorithm for linear programming is the simplex method
but worst case run time is known to be exponential. Linear programming is good example for
thinking about the limits of polynomial time as a formal definition of efficiency.

Vertex Cover as Integer Program

Recall weighted vertex cover as typically defined.

We make decision variable xi for each node i ∈ V to model choice of whether to include node i
in the vertex cover; xi = 0 means node i is not in the vertex cover, xi = 1 means node i is in
vertex cover. Create single n-dimensional vector x in which the ith coordinate corresponds to the
ith decision variable xi. Linear inequalities to encode requirement that nodes form a vertex cover
and use objective function to encode goal of minimizing total weight. For each edge (i, j) ∈ E, it
must have one end in the vertex cover, we write this as xi + xj ≥ 1. To express minimization, we
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write the set of node weights as n dimensional vector w, with the ith coordinating to wi, and then
minimize wtx. This looks like

(VC. IP) min
∑
i∈V

wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E

xi ∈ (0, 1) i ∈ V

Fact S is a vertex cover in G iff the vector x, defined as xi = 1 for i ∈ S, and xi = 0 for i /∈ S,
satisfies the constraints in (VC.IP). Further, we have w(S) = wtx.

Integer programming Linear programming, but with the condition that solutions must be inte-
ger valued. Above is integer programming.

Fact Vertex Cover ≤P Integer Programming

Fact The special case of 0-1 integer programming is NP-complete.

Using Linear Programming for Vertex Cover

Take (VC.IP) - which was too hard to solve - and drop requirement that every xi must be 0 or
1. This gives us an instance of (VC.LP). We can solve this in polynomial time because it is just
normal linear programming, i.e. we can find a set of values {x∗i } between 0 and 1 s.t. x∗i + x∗j ≥ 1
for each edge (i, j), and

∑
iwix

∗
i is minimized. Let x∗ be this vector and wLP = wtx∗ denote the

value of the objective function.

Fact Let S∗ denote a vertex cover of minimum weight. Then wLP ≤ w(S∗).

How can solving this linear program help us actually find a near-optimal vertex cover? Idea is to
work with values x∗i and infer a vertex cover S from them. Given a fractional solution {x∗i }, define
S = {i ∈ V : x∗i ≥ 1/2} - round values at least 1/2 up, and those below 1/2 down.

Fact The set S defined in this way is a vertex cover, and w(S) ≤ wLP .

Fact The algorithm produces a vertex cover S of at most twice the minimum possible weight.

Chapter 13: Randomized Algorithms

Randomized min-cut

Given an undirected graph G = (V,E), define a cut of G to be a partition of V into two non-empty
sets A and B. For a cut (A,B), the size of (A,B) is the number of edges with one end in A and
the other end in B. A global minimum cut is a cut of minimum size. We will use a contraction
algorithm to find the min cut.

Contraction algorithm Start with a connected multigraph G = (V,E); i.e. an undirected graph
that is allowed to have multiple parrallel edges between the same pair of nodes. Choose an
edge e = (u, v) of G at random and contract it. From this we get a new graph G′ where u
and v are now a single node w, all other nodes the same. Edges that had one end equal to u
and the other end equal to v are deleted from G′. Each other edge is preserved, updating its
ends accordingly if need be. Algo continues recursively, choosing edge uniformly at random
and contracting it and terminates when it reaches a graph with only two “super nodes” v1
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and v2. Each node as a subset S(vi) ⊆ V consisting of nodes contracted into them, and the
two subsets S(v1) and S(v2) form a partition of V . Output (S(v1), S(v2)) as the cut found
by the algorithm.

Fact The contraction algo returns a global min cut of G with probability at least 1/
(
n
2

)
Fact An undirected graph G = (V,E) on n nodes has at most

(
n
2

)
global min-cuts.

Linear-time median finding

Suppose we are given a set of n numbers S = {a1, a2, . . . , an}. With randomized approach we
can find the median in O(n) time, which is better than sorting in O(n log n) and finding it that
way.

First step to this is to develop a way to select the kth largest element of a set of n numbers, S (k
between 1 and n). Once we have this, we can call select(S, n/2) or select(S, (n+ 1)/2) to get the
median of S. Algorith is as follows

function select(S,k)
Choose a splitter ai ∈ S
for each element aj of S do

Put aj in S− if aj < ai
Put aj in S+ if aj > ai

end for
if |S−| = k − 1 then

The splitter ai was in fact the answer
else if |S−| ≥ k − 1 then

The kth largest element lies in S−

Recursively call SELECT(S−, k)
else

Suppose |S−| = l < k − 1
The kth largest element lies in S+

Recursively call SELECT(S+, k − 1− l)
end if

end function

Fact Regardless of how the splitter was choosen, the algo returns the kth largest element of S.

Rule Choose splitter ai ∈ S uniformly at random.

Fact Expected running time of SELECT(n, k) is O(n) when choosing splitter uniformly at random.

Hashing

There is a universe U of possible elements that is extremely large. Data structure is trying to keep
track of a set S ⊆ U whose size is generally a negligible fraction of U . Goal is to be able to insert
and delete elements from S and quickly determine whether a given element belongs to S.

Hash function basic idea of hasing is to work with array of size |S| instead of one the size of U .
Suppose we want to be able to store a set S of size n. Set up an array H of size n to store
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information, and use function h : U → {0, 1, . . . , n − 1} that maps elements of U to array
positions. h is hash function, H is hash table.

• to add u ∈ S, place u at position h(u) ∈ H

• works perfectly if for all distinct u, v ∈ S, h(u) 6= h(v), this is not true in real world,
elements can “collide”

Good hash function Use randomization.

Fact Let H be a universal set of hash functions mapping universe U to set {0, 1, . . . , n− 1}, let S
be arbitrary subset of U of size at most n, and let u be any element in U . Define X to be
random variable equal to the number of elements s ∈ S s.t. h(s) = h(u), for a random choice
of hash function h ∈ H. S and u are fixed and randomness is the choice of h ∈ H. Then
E[X] ≤ 1.

Universal class of hash functions Let A be set of all vectors of the form a = (a1, . . . , ar) where
ai is an integer in [0, p− 1] for each i = 1, . . . , r. For each a ∈ A, define linear function

ha(x) =
( r∑

i=1

aixi

)
mod p

and then the family of hash functions is H = {ha : a ∈ A}

Prime testing

Input is n a large number. To find a prime, select a random n and test if its prime. Challenge is
to test if a number n is a prime.

Number theory If p prime and a 6≡ 0 mod p then α 6= β =⇒ αa 6≡ βa mod p

Fermat’s little theorem If p prime and 1 < a < p then ap−1 ≡ 1 mod p

Prime testing using Fermat’s theorem • select a ∈ [2, p− 1]

• compute ap−1 mod p

• if ap−1 mod p 6≡ 1 mod p then p is not prime (but this doesn’t mean that if it is ≡ 1 p
is prime)

Fact If ∃ any a relatively prime to p s.t. ap−1 6≡ mod p then random a has probability ≥ 1/2 of
failing the test

Charmical number is n s.t. an−1 ≡ 1 mod n ∀ a and n relatively prime

• ∃ infinite Charmical numbers, but they are very rare

• these are the numbers for which in our test above they fail the “not prime” condition,
but still are not prime numbers, but we can probably ignore them because they are so
rare, this means that if ap−1 mod p 6≡ 1 mod p then p is not prime and otherwise we
say that it is prime
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